Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 21:14
  • Data zakończenia: 17 grudnia 2025 21:20

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Ile trzeba zapłacić za cegły potrzebne do zbudowania ściany o powierzchni 28 m2, jeżeli 140 cegieł jest wymaganych do wykonania 1 m2 ściany o grubości 38 cm, a cena jednej cegły wynosi 1,50 zł?

A. 5 880,00 zł
B. 3 920,00 zł
C. 1 596,00 zł
D. 7 980,00 zł
Aby obliczyć koszt cegieł potrzebnych do wykonania ściany o powierzchni 28 m², zaczynamy od ustalenia, ile cegieł potrzebujemy. Z danych wynika, że do wykonania 1 m² ściany potrzeba 140 cegieł. Zatem dla 28 m² obliczamy: 28 m² * 140 cegieł/m² = 3 920 cegieł. Następnie, znając cenę jednej cegły, która wynosi 1,50 zł, obliczamy całkowity koszt: 3 920 cegieł * 1,50 zł/cegła = 5 880,00 zł. To podejście jest zgodne z najlepszymi praktykami w budownictwie, gdzie przed rozpoczęciem prac kosztorysowych dokonuje się szczegółowych obliczeń, aby uniknąć niedoszacowania materiałów budowlanych. Dobrze przeprowadzone obliczenia pozwalają na efektywne zarządzanie budżetem i uniknięcie dodatkowych kosztów na etapie realizacji projektu.

Pytanie 2

W którym rodzaju stropu gęstożebrowego można znaleźć prefabrykowane belki żelbetowe?

A. Akermana
B. Fert
C. Teriva
D. DZ-3
Strop gęstożebrowy Fert nie jest odpowiedzią, ponieważ jest to system, który wykorzystuje płyty ceramiczne i żelbetowe, ale nie obejmuje prefabrykowanych belek żelbetowych. W praktyce jest on stosowany w budownictwie jednorodzinnym oraz w obiektach o małej rozpiętości, co ogranicza jego zastosowanie w większych projektach. Użycie belek żelbetowych w tym systemie jest rzadkie i nieoptymalne ze względu na ich masywność, co prowadzi do większych nakładów materiałowych i czasowych. Ponadto, strop Akermana, także niewłaściwy w tym kontekście, charakteryzuje się zupełnie inną konstrukcją, opartą na arkuszach żelbetowych, które również nie są prefabrykowane w klasycznym rozumieniu. W przypadku systemu Teriva, stosowane są płyty betonowe na żelbetowych belkach nośnych, co również nie pasuje do opisanego pytania. Te różnice mogą prowadzić do błędnych wniosków przy wyborze odpowiedniego systemu stropowego. Warto pamiętać, że wybór stropu powinien być zawsze uzależniony od specyfiki projektu, wymagań nośnych oraz lokalnych norm budowlanych, aby zapewnić bezpieczeństwo i funkcjonalność konstrukcji.

Pytanie 3

Cementowa zaprawa wyróżnia się wysoką

A. odpornością na skurcz
B. wytrzymałością na ściskanie
C. kapilarnością
D. higroskopijnością
Zaprawa cementowa charakteryzuje się dużą wytrzymałością na ściskanie, co czyni ją materiałem o kluczowym znaczeniu w budownictwie. Wytrzymałość na ściskanie definiuje zdolność materiału do przenoszenia obciążeń bez deformacji czy zniszczenia. W przypadku zapraw cementowych, wartość ta jest wynikiem odpowiednich proporcji składników, takich jak cement, woda i kruszywo. Przykładowo, zaprawy stosowane w murach nośnych muszą spełniać normy PN-EN 998-1, które precyzują minimalne wartości wytrzymałościowe zależnie od zastosowania. W praktyce, wytrzymałość zaprawy na ściskanie jest kluczowa w kontekście budowy ścian, fundamentów, oraz wszelkich innych konstrukcji, gdzie obciążenia są znaczące. Dodatkowo, odpowiednie dobranie klasy cementu oraz techniki mieszania i aplikacji zaprawy wpływa na jej trwałość i odporność na czynniki atmosferyczne, co jest istotne dla długowieczności obiektów budowlanych.

Pytanie 4

Jakie kruszywo wykorzystuje się do produkcji betonów klasycznych?

A. Łupkoporyt
B. Keramzyt
C. Żwir
D. Baryt
Choć keramzyt, baryt i łupkoporyt mogą mieć swoje zastosowanie w budownictwie, nie są one odpowiednie do produkcji betonów zwykłych. Keramzyt, jako kruszywo lekkie, wykorzystywane jest głównie do produkcji betonu lekkiego, który ma inne właściwości fizyczne i mechaniczne niż beton zwykły. Jego zastosowanie w sytuacjach, gdzie zmniejszenie masy konstrukcji jest kluczowe, może prowadzić do nieporozumień w kontekście projektowania betonów o określonej wytrzymałości. Baryt, z kolei, jest stosowany głównie w przemyśle naftowym oraz w produkcji betonów o dużej gęstości, co oznacza, że jest niewłaściwy w kontekście standardowych betonów budowlanych, gdzie nie jest wymagane zwiększenie masy. W końcu, łupkoporyt, jako materiał kruszywowy, jest mniej dostępny i nieekonomiczny w produkcji betonu, a jego właściwości nie są optymalne do zastosowań budowlanych. Często błędne wybory dotyczące kruszyw wynikają z braku zrozumienia ich właściwości oraz zastosowań w konstrukcjach budowlanych, co może prowadzić do poważnych problemów strukturalnych w przyszłości.

Pytanie 5

Z przedstawionego fragmentu rozporządzenia wynika, że budynek biurowy, który ma 9 kondygnacji nadziemnych o wysokości 3,00 m każda, a jego parter usytuowany jest 0,80 m nad poziomem terenu, należy do budynków.

Rozporządzenie ministra infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (fragment)
W celu określenia wymagań technicznych i użytkowych wprowadza się następujący podział budynków na grupy wysokości:
1. niskie (N) — do 12 m włącznie nad poziomem terenu lub mieszkalne o wysokości do 4 kondygnacji nadziemnych włącznie,
2. średniowysokie (SW) — ponad 12 m do 25 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 4 do 9 kondygnacji nadziemnych włącznie,
3. wysokie (W) — ponad 25 m do 55 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 9 do 18 kondygnacji nadziemnych włącznie,
4. wysokościowe (WW) — powyżej 55 m nad poziomem terenu.
A. średniowysokich.
B. niskich.
C. wysokościowych.
D. wysokich.
Budynek biurowy, który ma 9 kondygnacji i każda z nich mierzy 3 metry, osiąga całkowitą wysokość 27 metrów. To sprawia, że możemy go uznać za budynek wysoki według przepisów. Wysokie budynki to te, które mają więcej niż 25 metrów, ale mniej niż 55. Dlatego klasyfikacja budynków pod względem ich wysokości jest ważna, zwłaszcza przy projektowaniu lub budowie. Np. odpowiednie normy budowlane, jak PN-EN 1991-1-4, mówią o tym, jak budynek powinien znosić siłę wiatru, co jest mega istotne dla bezpieczeństwa. W przypadku wysokich budynków trzeba też zwrócić uwagę na ewakuację i instalacje przeciwpożarowe, a także na to, jak budynek jest zaprojektowany w kontekście ochrony środowiska czy efektywności energetycznej. Dobrze jest zrozumieć te zasady, bo pomagają one architektom i inżynierom w tworzeniu bezpiecznych i funkcjonalnych konstrukcji.

Pytanie 6

W trakcie prac remontowych, które obejmują wykonanie otworu dla przełożenia instalacji centralnego ogrzewania w betonie, powinno się wykorzystać

A. piły tarczowej
B. piły łańcuchowej
C. młota udarowego
D. wiertarki o niskich obrotach
Wykorzystanie młota udarowego do wykonania otworu w ścianie betonowej jest najlepszym wyborem w tym przypadku. Młot udarowy łączy w sobie funkcję wiercenia i udaru, co pozwala na skuteczne wnikanie w twarde materiały, takie jak beton. Dzięki zastosowanej technologii, narzędzie to generuje silne uderzenia, które rozbijają beton, co znacząco ułatwia pracę w porównaniu do innych urządzeń. Na przykład, używając młota udarowego, można szybko i efektywnie przebić się przez grube ściany, co jest niezbędne podczas instalacji rur centralnego ogrzewania. W standardach budowlanych oraz w branżowych praktykach remontowych, młot udarowy jest rekomendowany do tego typu zadań, ponieważ zapewnia szybkość oraz precyzję, minimalizując ryzyko uszkodzenia otaczających struktur. Dodatkowo, przy stosowaniu młota udarowego warto pamiętać o odpowiednich środkach ochrony osobistej, takich jak okulary ochronne i nauszniki, ponieważ praca z tym narzędziem generuje znaczny hałas oraz odpryski materiału.

Pytanie 7

Jakie będzie łączne wynagrodzenie pracownika za tynkowanie 2 powierzchni o wielkości 50 m2 oraz 3 powierzchni po 30 m2, jeśli cena za 1 m2 tynku wynosi 8 zł?

A. 1 280 zł
B. 1 520 zł
C. 290 zł
D. 1 600 zł
Żeby policzyć całkowite wynagrodzenie za otynkowanie, musisz najpierw ustalić, ile masz powierzchni do pokrycia. Mamy dwie powierzchnie po 50 m2, co daje nam 100 m2 oraz trzy po 30 m2, czyli dodatkowe 90 m2. Jak to zsumujemy, to dostajemy 190 m2. Koszt za 1 m2 tynku to 8 zł, więc całość wyniesie 190 m2 razy 8 zł, co daje 1 520 zł. Takie obliczenia są mega ważne w budowlance, bo dokładne oszacowanie kosztów to klucz do sukcesu projektu. Z własnego doświadczenia wiem, że warto też pomyśleć o dodatkowych wydatkach, jak materiały pomocnicze czy transport. Posiadanie odpowiednich narzędzi do kalkulacji może naprawdę przyspieszyć te obliczenia. Zrozumienie tych podstawowych zasad ułatwia później planowanie i zarządzanie projektami budowlanymi.

Pytanie 8

Ile wynosi łączna objętość dwóch ław fundamentowych o przekroju poprzecznym przedstawionym na rysunku i długości 8 m każda?

Ilustracja do pytania
A. 2,240 m3
B. 22 400 m3
C. 44 800 m3
D. 4,480 m3
Poprawna odpowiedź to 4,480 m3, co zostało uzyskane poprzez dokładne obliczenie objętości dwóch ław fundamentowych. Każda z ław ma długość 8 m oraz przekrój poprzeczny o wymiarach 70 cm x 40 cm. Aby obliczyć objętość jednej ławy, należy zastosować wzór na objętość prostopadłościanu: V = długość x szerokość x wysokość. Po przeliczeniu jednostek, szerokość i wysokość ławy powinny być wyrażone w metrach, co daje 0,7 m x 0,4 m x 8 m = 2,24 m3 dla jednej ławy. Ponieważ mamy dwie ławy, należy pomnożyć tę wartość przez 2, co prowadzi do łącznej objętości 4,48 m3. Takie obliczenia są powszechnie stosowane w inżynierii budowlanej, a znajomość właściwej metodyki obliczeń jest niezbędna dla każdego inżyniera, aby zapewnić właściwą stabilność konstrukcji. Postępowanie zgodnie z normami budowlanymi oraz uwzględnienie dodatkowych czynników, takich jak rodzaj gruntu czy obciążenia, są kluczowe w projektowaniu fundamentów.

Pytanie 9

Przedstawiony na rysunku pustak ceramiczny służy do wykonania

Ilustracja do pytania
A. ścian z pustką powietrzną.
B. obudowy pionów kanalizacyjnych.
C. przewodów wentylacyjnych.
D. obudowy rur centralnego ogrzewania.
Pustak ceramiczny, który został przedstawiony na rysunku, ma unikalne cechy konstrukcyjne, które czynią go idealnym materiałem do budowy przewodów wentylacyjnych. Otwory w pustaku są kluczowe, ponieważ pozwalają na efektywny przepływ powietrza, co jest niezbędne w systemach wentylacyjnych, a także w obiektach budowlanych, aby zapewnić odpowiednią jakość powietrza wewnętrznego. Zgodnie z normami budowlanymi, stosowanie pustaków ceramicznych w systemach wentylacyjnych pozwala na osiągnięcie wysokiej efektywności energetycznej oraz redukcję kosztów eksploatacji. Dodatkowo, ceramiczne materiały są odporne na działanie wysokich temperatur i korozję, co sprawia, że są one długotrwałym rozwiązaniem. W praktyce, zastosowanie pustaków ceramicznych w wentylacji może przyczynić się do poprawy komfortu mieszkańców poprzez regulację temperatury i wilgotności powietrza.

Pytanie 10

Jakiego rodzaju kruszywa należy użyć do stworzenia zaprawy, która będzie przeznaczona do wykonania tynku izolacyjnego?

A. Miału marmurowego
B. Żużla wielkopiecowego
C. Piasku rzecznego
D. Piasku kwarcowego
Piasek kwarcowy, choć często używany w budownictwie, nie jest odpowiedni do produkcji zapraw ciepłochronnych, głównie z powodu swoich właściwości termoizolacyjnych, które są znacznie gorsze niż te oferowane przez żużel wielkopiecowy. Piasek kwarcowy charakteryzuje się dużą gęstością i masą, co może prowadzić do zwiększenia ciężaru tynku, a tym samym do obniżenia jego efektów izolacyjnych. W kontekście tynków ciepłochronnych, kluczowe jest, aby kruszywo miało zdolność do zatrzymywania powietrza w swojej strukturze, co piasek kwarcowy nie jest w stanie zapewnić. Z kolei miał marmurowy, pomimo że ma estetyczne walory, nie spełnia wymogów dotyczących termoizolacyjności i może być zbyt drogi w zastosowaniu w skali budownictwa. Piasek rzeczny, choć z natury ma mniejsze zanieczyszczenia, również nie zapewnia odpowiednich właściwości izolacyjnych i może prowadzić do problemów z wilgocią w tynku. Wybór niewłaściwego kruszywa może skutkować nieefektywnymi rozwiązaniami budowlanymi, co podkreśla znaczenie stosowania materiałów zgodnych z wytycznymi branżowymi oraz normami, takimi jak PN-EN 998-1, które precyzują parametry technologiczne dla zapraw budowlanych. Dlatego też kluczowe jest, aby osoby zajmujące się doborem materiałów budowlanych miały świadomość właściwości technicznych i praktycznych aspektów używanych surowców.

Pytanie 11

Który z poniższych komponentów rusztowania nie wchodzi w skład trzyczęściowego zabezpieczenia bocznego rusztowań, które występują na przykład przy drogach?

A. Bortnica
B. Poręcz górna
C. Poręcz środkowa
D. Ograniczniki ochronne
Ograniczniki ochronne, poręcz górna oraz bortnica to elementy, które stanowią część trzyczęściowego zabezpieczenia bocznego rusztowań. Ograniczniki ochronne są kluczowe w zapobieganiu wypadkom związanym z upadkiem przedmiotów, co jest niezmiernie istotne w kontekście pracy w rejonach miejskich. Poręcz górna, zapewniając stabilność, usztywnia konstrukcję rusztowania i chroni pracowników przed upadkiem. Z kolei bortnica działa jako fizyczna bariera, ograniczając przestrzeń roboczą i redukując ryzyko upadku narzędzi czy materiałów budowlanych na osoby znajdujące się poniżej. Niezrozumienie roli poręczy środkowej jako elementu, który nie należy do tego trio, może prowadzić do błędnych wniosków dotyczących klasyfikacji zabezpieczeń. Poręcz środkowa, mimo że jest istotnym elementem w kontekście ogólnych zabezpieczeń na rusztowaniach, nie wchodzi w skład standardowego zestawienia zabezpieczeń bocznych. Takie nieprawidłowe zrozumienie może prowadzić do niewłaściwego planowania i realizacji bezpieczeństwa na budowach. Prawidłowe rozszyfrowanie i zastosowanie elementów zabezpieczeń jest niezbędne do przestrzegania standardów branżowych, takich jak PN-EN 12811, które określają zasady projektowania i montażu rusztowań.

Pytanie 12

Przedstawione na ilustracji prefabrykowane belki przeznaczone są do wykonywania

Ilustracja do pytania
A. belek stropowych.
B. podciągów.
C. żeber rozdzielczych.
D. nadproży.
Wybranie czegoś innego niż nadproża pokazuje, że możesz mieć pewne nieporozumienia co do tego, jak prefabrykowane belki działają w budownictwie. Na przykład, żebra rozdzielcze służą do podziału stropów, ale nie przenoszą obciążeń z górnych elementów, co jest kluczowe dla nadproży. Podciągi to inna sprawa – są poziomymi elementami, które przenoszą obciążenia ze stropu na słupy i są bardziej typowe w większych konstrukcjach. A belki stropowe? Te służą do nośności stropów i to zupełnie coś innego niż nadproża, które przenoszą ciężar nad otworami. Te różnice są ważne, bo niewłaściwe zrozumienie tego może spowodować, że projekty będą nieprawidłowe, a dobór materiałów złe. Dlatego wiedza o tych elementach jest super ważna dla inżynierów, żeby zapewnić, że budynki będą trwałe i bezpieczne.

Pytanie 13

Podczas wykonywania tynków gipsowych kolejną czynnością po wstępnym wyrównaniu zaprawy łatą tynkarską typu H jest "piórowanie", czyli wstępne gładzenie powierzchni tynku. Na której ilustracji przedstawiono tę czynność?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 4.
C. Na ilustracji 2.
D. Na ilustracji 3.
Wybór niewłaściwej ilustracji może wynikać z nieporozumienia dotyczącego technik tynkarskich oraz etapu, na którym znajduje się proces tynkowania. Na ilustracjach 1 i 2 można zaobserwować czynności związane z nakładaniem zaprawy tynkarskiej, co jest pierwszym krokiem w procesie tynkowania. Nakładanie tynku polega na aplikacji zaprawy na powierzchnię ściany, co jest zupełnie inną czynnością niż piórowanie. Ponadto, ilustracja 4 przedstawia końcowe wygładzanie tynku, które ma miejsce po piórowaniu. Wiele osób może mylić te etapy, sądząc, że wszystkie czynności związane z gładzeniem są równoważne, co jest błędem. Prawidłowe zrozumienie poszczególnych etapów tynkowania jest kluczowe dla osiągnięcia wysokiej jakości wykończenia. Często zdarza się, że pomijane są istotne różnice między tymi technikami, co prowadzi do błędnych decyzji. Aby skutecznie piórować, należy najpierw odpowiednio nałożyć tynk, a następnie, gdy jego powierzchnia jest jeszcze wilgotna, przystąpić do procesu wygładzania. Bez tej wiedzy, łatwo jest popełnić błąd, co może wpłynąć na ostateczny efekt estetyczny oraz trwałość wykończenia.

Pytanie 14

Jakie konstrukcje uznawane są za obiekty inżynieryjne?

A. Konstrukcje mostowe
B. Obiekty przemysłowe
C. Świątynie
D. Budowle z konstrukcją szkieletową
Hale produkcyjne i budynki szkieletowe to też konstrukcje inżynieryjne, ale nie są obiektami inżynierskimi w takim rozumieniu, jak mosty. Hale produkcyjne służą do pracy w fabrykach, więc ich budowa skupia się na tym, jak lepiej produkować, a nie na pokonywaniu przeszkód, jakie mamy w naturze. Budynki szkieletowe, które mają stalowe lub drewniane szkielety, są bardziej związane z budownictwem mieszkalnym czy publicznym, a nie z transportem. Kościoły, które często są ogromne i piękne, skupiają się na wartościach kulturowych i religijnych, a nie na tym, żeby pozwalać na ruch czy przechodzenie nad przeszkodami. Te budowle projektuje się tak, żeby były ładne i miały sens w kontekście religijnym, co sprawia, że różnią się od mostów. Łatwo pomylić różne rodzaje budowli, bo wszystkie należą do szerokiej kategorii budowlanej. Ważne, żeby zrozumieć, że obiekty inżynieryjne są projektowane z myślą o konkretnych problemach, na przykład z transportem, co odróżnia je od innych budynków.

Pytanie 15

Na podstawie danych zawartych w tablicy 0803 z KNR 2-02 oblicz koszt robocizny w przypadku wykonania sposobem ręcznym 250 m2 tynku zwykłego kategorii III na ścianie, jeżeli stawka za 1 r-g wynosi 12,00 zł.

Ilustracja do pytania
A. 1 144,50 zł
B. 1 341,90 zł
C. 1 776,30 zł
D. 2 145,30 zł
Zgubienie się w procesie obliczania kosztów robocizny często prowadzi do błędnych wniosków, co widać w przypadku niepoprawnych odpowiedzi. Przede wszystkim, podstawowym błędem jest pominięcie właściwego przeliczenia roboczogodzin na podstawie norm produkcji. Właściwe oszacowanie ilości roboczogodzin jest kluczowe do prawidłowego obliczenia kosztów. Przyjmowanie zbyt wysokich lub zbyt niskich wartości na m2 może znacząco wpłynąć na końcowy wynik. Wiele osób może również zignorować wpływ dodatkowych kosztów pośrednich, takich jak opłaty za sprzęt, transport czy materiały, które są niezbędne przy realizacji tynków. Innym typowym błędem jest nieumiejętne zrozumienie jednostek miary. W przypadku tynkowania, istotne jest zrozumienie, że 1 m2 nie przekłada się bezpośrednio na roboczogodziny, ponieważ różne techniki aplikacji mogą wymagać różnych ilości czasu. Osoby rozwiązujące takie zadania powinny również pamiętać o standardach branżowych, które jasno określają normy czasowe oraz stawki w zależności od kategorii tynku. Właściwe zrozumienie tych aspektów jest niezbędne do skutecznego i efektywnego zarządzania kosztami robocizny w projektach budowlanych.

Pytanie 16

Na podstawie wyciągu ze Szczegółowej Specyfikacji Technicznej Wykonania i Odbioru Robót Budowlanych SST wskaż, ile litrów zaprawy gipsowej można uzyskać z 20 kg worka suchej, gotowej mieszanki?

Szczegółowa Specyfikacja Techniczna Wykonania i Odbioru Robót Budowlanych SST
(wyciąg)
B.3.03. Tynk gipsowy
Dane techniczne:
- średnia grubość tynku: 10 mm (grubość min.8 mm)
- ciężar nasypowy: 800kg/m3
- uziarnienie: do 1,2 mm
- wydajność: 100 kg = 125 l zaprawy
- zużycie: 0,8 kg na mm i m2
- czas schnięcia: średnio około 14 dni
A. 25,01
B. 5,01
C. 50,01
D. 2,51
Wyniki, które wskazują na objętości inne niż 25,01 l, opierają się na błędnych założeniach dotyczących przeliczeń masy na objętość. Możliwe, że błędna odpowiedź wynika z nieprawidłowego zastosowania wzoru lub ignorowania kluczowych proporcji zawartych w dokumentacji technicznej. Na przykład, odpowiedzi sugerujące objętości takie jak 50,01 l lub 5,01 l mogą wynikać z nieodpowiedniego pomnożenia lub podzielenia masy suchej mieszanki bez uwzględnienia właściwego współczynnika konwersji. Typowy błąd myślowy polega na założeniu, że objętość zaprawy jest bezpośrednio proporcjonalna do masy, co nie jest zgodne z rzeczywistością, ponieważ gęstość materiału odgrywa kluczową rolę w tej relacji. Dodatkowo, niektóre odpowiedzi mogą się opierać na nieaktualnych lub niekompletnych danych technicznych, co podkreśla znaczenie korzystania z wiarygodnych źródeł dokumentacji. Aby uniknąć takich błędów, zaleca się gruntowne zapoznanie się z obowiązującymi standardami branżowymi dotyczącymi przeliczeń i proporcji w budownictwie, co przyczyni się do poprawy efektywności pracy oraz jakości realizowanych projektów.

Pytanie 17

Jaką ilość zaprawy należy nabyć do zbudowania ścian o grubości ½ cegły oraz powierzchni 28 m2, przy założeniu, że zużycie wskazane przez producenta wynosi 35 kg zaprawy na 1 m2 ściany tej grubości?

A. 980 m2
B. 980 kg
C. 490 kg
D. 490 m2
Aby obliczyć, ile zaprawy potrzebujemy do wymurowania ścian o powierzchni 28 m² i grubości ½ cegły, musimy pomnożyć zużycie zaprawy przez powierzchnię. Producent podaje, że na 1 m² ściany o tej grubości potrzebne jest 35 kg zaprawy. Zatem, dla 28 m² obliczenia będą wyglądać następująco: 28 m² * 35 kg/m² = 980 kg. To oznacza, że do wykonania tego zadania musimy zakupić 980 kg zaprawy. W praktyce, znajomość zużycia materiałów budowlanych na jednostkę powierzchni jest kluczowa dla prawidłowego planowania budowy. Umożliwia to nie tylko skuteczne zarządzanie kosztami, ale także minimalizowanie odpadów materiałowych. Dobrą praktyką jest zawsze uwzględnienie dodatkowego zapasu zaprawy, aby pokryć ewentualne straty podczas transportu oraz nieprzewidziane okoliczności na budowie, takie jak błędy w obliczeniach lub zmiany w planie budowy.

Pytanie 18

Rozbiórkę budynku z murowanymi ścianami i dachowym stropem drewnianym należy rozpocząć od

A. rozbiórki konstrukcji więźby dachowej
B. demontażu urządzeń i instalacji sanitarnych
C. demontażu stolarki okiennej i drzwiowej
D. rozbiórki ścianek działowych
Zaczynanie rozbiórki budynku od demontażu więźby dachowej i stolarki okiennej to nie do końca dobre podejście. Każdy krok w tym procesie powinien być robiony w odpowiedniej kolejności, żeby uniknąć różnych kłopotów. Na przykład, demontując dach przed usunięciem instalacji sanitarnych, możemy narobić sobie biedy z wyciekami, co może prowadzić do poważnych problemów ze strukturą budynku. Podobnie, jeśli zaczniemy ściągać okna i drzwi bez odłączenia wentylacji czy elektryki, to mogą się zdarzyć jakieś awarie. Rozbierając ścianki działowe przed usunięciem urządzeń sanitarnych, ryzykujemy, że nie zabezpieczymy ich odpowiednio. Ważne, żeby trzymać się znanych norm, jak PN-EN 16272, które mówią, że demontaż instalacji sanitarnych to pierwszy krok w całym procesie. W przeciwnym razie możemy narazić się na dodatkowe koszty napraw i zagrożenie dla zdrowia osób pracujących na budowie. Dlatego ważne, żeby robić wszystko w odpowiedniej kolejności, co pozwoli na lepsze zarządzanie projektem i zmniejszenie ryzyka.

Pytanie 19

W czasie intensywnych upałów cegłę ceramiczną wypełnioną przed jej użyciem do murowania należy

A. zamoczyć w wodzie
B. zagruntować gruntownikiem
C. zgromadzić pod zadaszeniem
D. nakryć plandeką
Zanurzenie cegły ceramicznej w wodzie przed murowaniem to naprawdę ważny krok, zwłaszcza gdy na dworze jest gorąco. Cegła ceramiczna łatwo wchłania wodę, a jeśli jest zbyt sucha, to może się okazać, że zaprawa nie zwiąże się z nią dobrze. Chodzi o to, żeby cegła miała odpowiednią wilgoć, co sprawia, że połączenie z zaprawą murarską staje się mocniejsze. Kiedy nie nawilżamy cegły, to ona może wciągać wodę z zaprawy, co prowadzi do pęknięć i osłabienia całej ściany. Najlepiej zanurzyć cegły na około 10-15 minut, żeby miały czas na wchłonięcie wody. W branży budowlanej to już praktyka, która jest uważana za standard, co można zobaczyć w normach budowlanych jak PN-EN 771-1. Mówią one o tym, jak ważne jest dobre przygotowanie materiałów przed ich użyciem, więc lepiej tego nie lekceważyć.

Pytanie 20

Długość belek stalowych dwuteowych, zastosowanych w nadprożu otworu okiennego, wykonanego w ścianie zewnętrznej przy klatce schodowej, w budynku, którego rzut przedstawiono na rysunku, wynosi

Ilustracja do pytania
A. 240 cm
B. 146 cm
C. 206 cm
D. 144 cm
Długość belek stalowych dwuteowych zastosowanych w nadprożu otworu okiennego wynosi 240 cm, co zostało wyraźnie zaznaczone na dołączonym rysunku. Takie belki są kluczowe w konstrukcji, gdyż zapewniają odpowiednie wsparcie dla nadproża, co jest szczególnie ważne w kontekście bezpieczeństwa budynku. Przy projektowaniu nadproży, długość belek musi być dostosowana do rozpiętości otworu oraz obciążeń, które będą na nie działać. W przypadku otworów okiennych, długość belek powinna przewyższać szerokość otworu, aby zapewnić odpowiednią stabilność i przenoszenie obciążeń z wyższych partii budynku. W praktyce, stosuje się standardy, takie jak Eurokod 3, które określają zasady projektowania konstrukcji stalowych. Wiedza na temat długości belek i ich odpowiedniego zastosowania jest niezbędna dla inżynierów budowlanych, aby zapewnić trwałość i bezpieczeństwo struktur. Przykładem zastosowania belek stalowych dwuteowych mogą być również inne elementy konstrukcyjne, takie jak stropy czy dachy, gdzie ich odpowiednia długość i przekrój są kluczowe dla właściwego przenoszenia obciążeń.

Pytanie 21

Na zdjęciu przedstawiono lico muru w wiązaniu

Ilustracja do pytania
A. polskim.
B. amerykańskim.
C. weneckim.
D. pospolitym.
Na tym zdjęciu widzimy lico muru w wiązaniu polskim. To jedna z najpopularniejszych metod układania cegieł, szczególnie w budownictwie murowanym. W tym wiązaniu cegły są układane naprzemiennie - jedne leżą dłuższymi bokami, a inne krótszymi. Dzięki temu mur jest nie tylko ładny, ale też mocniejszy i stabilniejszy. Możemy to zauważyć w wielu tradycyjnych budynkach, jak domy jednorodzinne czy kościoły, gdzie ważny jest zarówno wygląd, jak i trwałość konstrukcji. Warto też wiedzieć, że to wiązanie dobrze radzi sobie z różnymi obciążeniami, więc świetnie nadaje się do mniejszych budynków czy ścianek działowych. Dobrze jest znać różne rodzaje wiązań, bo to klucz do zapewnienia solidności i bezpieczeństwa budowli, szczególnie dla architektów i inżynierów.

Pytanie 22

Na podstawie fragmentu instrukcji producenta oblicz, ile kilogramów zaprawy murarskiej potrzeba do wymurowania jednej ściany grubości 25 cm, długości 12 m i wysokości 3 m.

Fragment instrukcji producenta
Grubość ściany
z cegły pełnej
Zużycie suchej zaprawy
[kg/m²]
½ cegłyok. 40
1 cegłaok. 100
A. ok. 360 kg
B. ok. 900 kg
C. ok. 1440 kg
D. ok. 3600 kg
Wszystkie błędne odpowiedzi wynikają z nieprawidłowego podejścia do obliczeń dotyczących ilości zaprawy murarskiej. Kluczowym aspektem jest zrozumienie, jak obliczyć powierzchnię ściany oraz jak zastosować normy zużycia materiałów budowlanych. W przypadku odpowiedzi, które wskazują na zbyt niskie wartości zaprawy, jak np. 900 kg czy 360 kg, można zaobserwować typowy błąd związany z pomijaniem ważnych obliczeń lub zaniżeniem standardowego zużycia. Zastosowanie normy 100 kg/m² dla ściany o grubości jednej cegły jest istotne, ponieważ pozwala na właściwe oszacowanie potrzebnej ilości zaprawy. Z kolei odpowiedzi takie jak 1440 kg mogą wynikać z błędnego przeliczenia powierzchni ściany lub niepoprawnego użycia danych dotyczących zużycia. W budownictwie kluczowe jest nie tylko poprawne obliczenie, ale także uwzględnienie wszelkich norm oraz standardów, aby osiągnąć pożądane efekty w zakresie jakości i trwałości konstrukcji. Prawidłowe podejście do takich zadań jest fundamentalne w pracy każdego inżyniera budowlanego oraz wykonawcy, dlatego warto zwracać szczególną uwagę na szczegóły i przyjmować dobrze uzasadnione dane.

Pytanie 23

Na podstawie informacji podanych w instrukcji producenta oblicz, ile 25 kilogramowych worków zaprawy murarskiej należy przygotować do wymurowania 40 m2 ściany o grubości 25 cm.

Instrukcja producenta
Grubość ściany
(z cegły pełnej)
Zużycie zaprawy
przy grubości spoiny ok. 1 cm
1/2 c40 kg/m2
1 c100 kg/m2
A. 128 worków.
B. 64 worki.
C. 160 worków.
D. 40 worków.
Wybór błędnych odpowiedzi często wynika z nieprawidłowego zrozumienia zasad obliczania ilości materiałów budowlanych. Na przykład, niektóre podejścia mogą zakładać, że zużycie zaprawy będzie inne dla różnych grubości lub powierzchni, co jest niezgodne z dostarczonymi danymi producenta. Każda z niepoprawnych odpowiedzi, takich jak 40, 64, czy 128 worków, ignoruje kluczowy aspekt obliczeń, jakim jest bezpośrednie mnożenie powierzchni przez odpowiednią wagę zaprawy na metr kwadratowy oraz jej późniejsze przeliczenie na jednostki sprzedaży. Często pojawiającym się błędem jest również niewłaściwe szacowanie grubości ściany lub jej powierzchni, co prowadzi do znacznych rozbieżności w końcowych wynikach. W praktyce budowlanej każdy materiał ma swoje specyfikacje dotyczące zużycia i to właśnie te normy powinny być podstawą obliczeń. Oprócz tego, jest to także przykład sytuacji, w której łatwo można popełnić błąd, jeśli nie uwzględni się systematycznego podejścia do obliczeń materiałów. Warto więc przywiązywać większą wagę do analizy danych oraz przeliczeń, zanim podejmie się decyzje o zamówieniu konkretnej ilości materiałów budowlanych.

Pytanie 24

Które nadproże przedstawiono na rysunku?

Ilustracja do pytania
A. Z prefabrykowanych kształtek typu "U".
B. Z prefabrykowanych belek "Porotherm".
C. Sklepione murowane z cegieł.
D. Monolityczne żelbetowe.
Wybór odpowiedzi innej niż 'Z prefabrykowanych belek 'Porotherm'' może wynikać z nieporozumienia dotyczącego cech i zastosowań różnych typów nadproży. Na przykład, nadproża monolityczne żelbetowe, choć często stosowane w budownictwie, są gładkie i solidne, co sprawia, że nie posiadają charakterystycznych otworów, które są widoczne na rysunku. Monolityczne nadproża wymagają również bardziej skomplikowanego procesu produkcji oraz dłuższego czasu schnięcia, co może wpływać na harmonogram budowy. Z kolei sklepione nadproża murowane z cegieł, choć estetyczne, różnią się kształtem od prefabrykowanych rozwiązań, co czyni je mniej odpowiednimi w tej sytuacji. Prefabrykowane kształtki typu 'U' również mają inną geometrię i nie są dedykowane do takich zastosowań jak nadproża, a ich wykorzystanie w budownictwie zazwyczaj odnosi się do innych elementów konstrukcyjnych, takich jak fundamenty czy podparcia. Właściwe zrozumienie różnic między tymi rodzajami nadproży jest kluczowe dla efektywnego projektowania i realizacji konstrukcji budowlanych. Typowym błędem myślowym jest zakładanie, że nadproża monolityczne lub murowane mogą być stosowane zamiennie z prefabrykowanymi belkami, co w praktyce prowadzi do problemów z dopasowaniem i wykonawstwem.

Pytanie 25

Przedstawioną na ilustracji łatę tynkarską typu H stosuje się do

Ilustracja do pytania
A. wyznaczania powierzchni tynku.
B. wyrównywania tynku po lekkim związaniu.
C. nakładania poszczególnych warstw tynku.
D. zaciągania tynku bezpośrednio po nałożeniu zaprawy.
Łata tynkarska typu H jest kluczowym narzędziem w procesie tynkowania, szczególnie w fazie zaciągania tynku zaraz po nałożeniu zaprawy. Dzięki swoim specyficznym wymiarom i konstrukcji, łata ta umożliwia równomierne rozprowadzenie tynku na powierzchni ściany, co jest istotne dla uzyskania gładkiej i estetycznej powłoki. Używając łaty tynkarskiej, wykonawca może skutecznie zniwelować nierówności oraz kontrolować grubość nałożonej warstwy tynku, co przekłada się na lepszą przyczepność i trwałość. W praktyce, stosowanie łaty typu H pozwala na uzyskanie jednolitej struktury tynku, co jest zgodne z najlepszymi praktykami w branży budowlanej. Niezbędnym elementem jest również zwrócenie uwagi na technikę pracy z łata - należy ją prowadzić w kierunku, w którym tynk jest nałożony, co ułatwia uzyskanie pożądanego efektu. Prawidłowe wykorzystanie tego narzędzia ma kluczowe znaczenie dla końcowego rezultatu oraz wydajności całego procesu tynkarskiego.

Pytanie 26

Który etap wykonania ocieplenia ścian budynku metodą lekką mokrą przedstawiono na ilustracji?

Ilustracja do pytania
A. Nakładanie zaprawy klejowej.
B. Wtapianie siatki zbrojącej.
C. Wyrównanie powierzchni płyt styropianowych.
D. Nakładanie tynku cienkowarstwowego.
Nakładanie tynku cienkowarstwowego to kluczowy etap w procesie ocieplania ścian budynku metodą lekką mokrą. W tej fazie, po uprzednim przygotowaniu powierzchni, na którą nałożono warstwę styropianu i siatkę zbrojącą, aplikowany jest tynk o jednolitej, gładkiej konsystencji. Tynk cienkowarstwowy ma na celu nie tylko estetyczne wykończenie, ale również ochronę przed warunkami atmosferycznymi. Właściwe nałożenie tynku pozwala na uzyskanie odpowiedniej paroprzepuszczalności oraz odporności na czynniki zewnętrzne. W standardach budowlanych, takich jak PN-EN 998-1, tynki powinny spełniać określone wymagania dotyczące wytrzymałości i trwałości. Zastosowanie tynku cienkowarstwowego jest szczególnie zalecane w budownictwie energooszczędnym, gdzie istotne jest ograniczenie strat ciepła oraz poprawa komfortu termicznego. Dobrą praktyką jest stosowanie tynków w harmonii z systemem ociepleniowym, co zapewnia długotrwałe efekty izolacyjne.

Pytanie 27

W celu skonstruowania jednowarstwowych ścian zewnętrznych, ze względu na potrzebę osiągnięcia właściwej izolacji cieplnej, najczęściej wykorzystuje się

A. cegły ceramiczne pełne lub bloczki wykonane z betonu kruszywowego
B. bloczki silikatowe bądź płyty gipsowo-kartonowe
C. cegły ceramiczne klinkierowe bądź cegły ceramiczne dziurawki
D. bloczki z betonu komórkowego lub pustaki ceramiczne poryzowane
Wybór materiałów budowlanych do konstrukcji jednowarstwowych ścian zewnętrznych powinien być uzależniony od ich właściwości izolacyjnych, co niestety nie jest brane pod uwagę w przypadku bloczków silikatowych czy płyty gipsowo-kartonowej. Bloczki silikatowe nie są powszechnie stosowane w ścianach zewnętrznych ze względu na ich ograniczone parametry izolacyjne i większą gęstość, co skutkuje wyższym współczynnikiem przewodzenia ciepła. Płyty gipsowo-kartonowe, choć wykorzystywane w budownictwie, są materiałem przeznaczonym głównie do budowy ścian działowych oraz wykończeniowych, a nie do konstrukcji nośnych ścian zewnętrznych. Cegły ceramiczne pełne również mają ograniczenia w zakresie izolacyjności, a ich duża masa sprawia, że nie są optymalnym rozwiązaniem dla budynków wymagających odpowiedniej efektywności energetycznej. Z kolei cegły klinkierowe i cegły ceramiczne dziurawki oferują lepsze parametry, ale nadal nie dorównują właściwościom izolacyjnym betonu komórkowego i pustaków poryzowanych. Warto również zauważyć, że materiały budowlane muszą spełniać określone normy i standardy, które regulują ich zastosowanie w kontekście izolacyjności cieplnej. Ignorowanie tych aspektów może prowadzić do nieefektywności energetycznej budynku, co w dłuższej perspektywie skutkuje wyższymi kosztami eksploatacyjnymi i negatywnym wpływem na środowisko.

Pytanie 28

Odpowiednia organizacja miejsca pracy przy wykonywaniu robót murarskich polega na podzieleniu go na

A. 4 prostopadłe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
B. 3 równoległe do muru pasma: robocze, materiałowe, transportowe
C. 4 równoległe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
D. 3 prostopadłe do muru pasma: robocze, materiałowe, transportowe
Wskazanie organizacji stanowiska roboczego w robót murarskich jako podziału na prostopadłe pasma może prowadzić do poważnych błędów w praktyce budowlanej. W kontekście wykonywania robót murarskich, pasma prostopadłe do muru mogą ograniczać przestrzeń roboczą i powodować chaos w organizacji pracy. W sytuacji, gdy pasmo robocze jest prostopadłe do muru, wykonawcy mogą napotykać trudności z dostępem do materiałów budowlanych i narzędzi, co prowadzi do nieefektywności i opóźnień w realizacji projektu. Dodatkowo, nieprawidłowe zorganizowanie przestrzeni roboczej zwiększa ryzyko wypadków, ponieważ zatory i przeszkody mogą powodować potknięcia lub upadki. Podobnie, koncepcja czterech pasm, w tym pasma narzędziowego, może być myląca, ponieważ nadmiar podziałów w ograniczonej przestrzeni prowadzi do zamieszania i trudności w lokalizacji potrzebnych zasobów. W praktyce budowlanej ważne jest, aby zorganizować stanowisko pracy w sposób, który sprzyja płynności wykonywania robót, a nie utrudnia je. Kluczem do sukcesu jest więc utrzymanie trzech równoległych pasm, co jest powszechnie uznawane za najlepszą praktykę w branży budowlanej.

Pytanie 29

Do budowy ścian fundamentowych trzeba użyć

A. pustaków ceramicznych
B. cegły dziurawki
C. bloczków betonowych
D. cegły szamotowej
Wybór pustaków ceramicznych, cegły szamotowej i cegły dziurawki do wznoszenia ścian fundamentowych nie jest właściwy. Pustaki ceramiczne, chociaż stosowane w budownictwie, mają ograniczoną wytrzymałość na działanie wilgoci oraz zmiany temperatury. Ich zastosowanie w fundamentach może prowadzić do pęknięć i obniżenia trwałości konstrukcji. Cegła szamotowa jest materiałem ognioodpornym, przeznaczonym głównie do budowy pieców, kominków oraz innych elementów narażonych na wysokie temperatury. Nie nadaje się więc do zastosowania w fundamentach, gdzie priorytetem jest nośność i odporność na czynniki atmosferyczne. Cegła dziurawka, znana ze swojej lekkości i dobrych właściwości izolacyjnych, również nie jest materiałem odpowiednim do ścian fundamentowych, ponieważ jej struktura nie zapewnia wystarczającej wytrzymałości mechanicznej. W praktyce, do budowy fundamentów należy wybierać materiały o wysokiej klasie nośności oraz odporności na wilgoć, co jest zgodne z obowiązującymi standardami budowlanymi. Używanie niewłaściwych materiałów może prowadzić do poważnych problemów strukturalnych w przyszłości, co jest kluczowe w kontekście długoterminowej trwałości budowli.

Pytanie 30

Na podstawie fragmentu instrukcji producenta oblicz, ile bloczków gazobetonowych o wymiarach
240×240×590 mm potrzeba do wymurowania ściany grubości 24 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Wymiary bloczków
[mm]
Zużycie bloczków
[szt./m²]
240×240×5907
120×240×5907
A. 80 szt.
B. 336 szt.
C. 8064 szt.
D. 672 szt.
Wybór błędnej odpowiedzi zazwyczaj wynika z błędnego obliczenia powierzchni ściany lub po prostu niejasnego zrozumienia, ile bloczków potrzebujesz. Na przykład, jeśli wybrałeś zbyt dużą liczbę bloczków, to mogło być spowodowane tym, że źle podzieliłeś całkowitą powierzchnię ściany przez powierzchnię jednego bloczka. A jeżeli wybrałeś zbyt mało bloczków, to może nie pamiętałeś o zapasie materiału. W budownictwie to całkiem normalna praktyka, żeby mieć dodatkowe bloczki, bo zawsze mogą wystąpić straty. Pamiętaj, że standardowo warto doliczyć około 10-15% zapasu materiału, bo to może uratować Cię od przestojów na budowie. Błędy w obliczeniach mogą się przekładać na nieefektywne zarządzanie materiałami, co na pewno nie jest tym, co chcesz osiągnąć.

Pytanie 31

Ile cegieł potrzeba do wymurowania ściany o grubości 25 cm, której widok przedstawiono na rysunku, jeżeli nakłady na 1 m2 ściany o grubości 1 cegły (25 cm) wynoszą 92,7 szt?

Ilustracja do pytania
A. 1113 szt.
B. 939 szt.
C. 93 szt.
D. 927 szt.
Wybór nieprawidłowej odpowiedzi może wynikać z kilku kluczowych błędów w rozumieniu procesu obliczania ilości cegieł. Osoby, które odpowiadają 93 szt. lub 939 szt., mogą myśleć, że odpowiedzi te są bliskie poprawnej wartości, jednakże to błąd w samym podejściu do obliczeń. Odpowiedź 93 szt. sugeruje, że ktoś nie uwzględnił poprawnie powierzchni ściany do wymurowania, co może wskazywać na pomylenie jednostek lub zastosowanie niewłaściwego mnożnika. Z kolei wybór 939 szt. sugeruje, że osoba mogła błędnie zinterpretować nakład materiału lub pomylić się w obliczeniach, nie uwzględniając, że już wstępnie podana ilość cegieł na 1 m² była zaokrąglona i nieprawidłowa. W kontekście odpowiedzi 1113 szt., istotnym błędem jest brak zrozumienia, że nakład betonu nie może być liczony jako całkowita suma cegieł przy dodawaniu powierzchni, co prowadzi do znacznego przeszacowania. W praktyce, przy obliczaniu materiałów budowlanych, kluczowe jest nie tylko zrozumienie zasadności ilości, ale także umiejętność analizy i weryfikacji danych wyjściowych. Umiejętności te są fundamentem efektywnego zarządzania projektem budowlanym oraz realizacji zadań w zgodzie z normami branżowymi.

Pytanie 32

Na rysunku przedstawiono lico muru w wiązaniu

Ilustracja do pytania
A. główkowym,
B. wozówkowym.
C. krzyżykowym.
D. polskim.
Na tym rysunku widać lico muru w wiązaniu wozówkowym. To jeden z najczęściej stosowanych sposobów układania cegieł w budownictwie, co nie jest bez powodu. Cegły w takim wiązaniu układa się naprzemiennie, więc co druga cegła jest dłuższa, a reszta jest krótsza. Dzięki temu mamy solidniejszy mur, mniejsze ryzyko pęknięć i większą nośność całej konstrukcji. Wozówkowe wiązanie stosuje się zarówno w domach, jak i w różnych budynkach użyteczności publicznej. W praktyce, pomaga to rozkładać obciążenia na większą powierzchnię, a to jest zgodne z normami budowlanymi, jak Eurokod 6, który mówi o projektowaniu murów z cegły. Ciekawym jest, że podczas budowy ważne, żeby dłuższe cegły były układane w sposób, który zapewnia ich równomierne wsparcie, co naprawdę zwiększa trwałość całej konstrukcji.

Pytanie 33

Aby przygotować zaprawę cementowo-wapienną w proporcji objętościowej 1:2:6 (cement:wapno:piasek), wykorzystano 20 dm3 ciasta wapiennego. Jaką ilość piasku należy dodać do tej zaprawy?

A. 0,090 m3
B. 0,006 m3
C. 0,009 m3
D. 0,060 m3
Aby obliczyć, ile piasku należy dodać do zaprawy cementowo-wapiennej o proporcjach 1:2:6, zaczynamy od zrozumienia, że proporcja odnosi się do objętości poszczególnych składników. W tym przypadku mamy 1 część cementu, 2 części wapna i 6 części piasku. Suma proporcji wynosi 1 + 2 + 6 = 9 części. Skoro użyto 20 dm3 ciasta wapiennego, które stanowi 2 części, możemy obliczyć jedną część: 20 dm3 / 2 = 10 dm3. Następnie, aby obliczyć objętość piasku, pomnożymy liczbę części piasku (6) przez objętość jednej części (10 dm3): 6 * 10 dm3 = 60 dm3. Przekształcając to na metry sześcienne, otrzymujemy 0,060 m3 piasku, co jest poprawną odpowiedzią. Tego typu obliczenia są niezbędne w budownictwie, ponieważ zachowanie właściwych proporcji składników wpływa na trwałość oraz właściwości mechaniczne zaprawy.

Pytanie 34

Aby połączyć mury, które były wznoszone w różnych okresach, należy użyć na długości muru

A. spoinę zbrojoną
B. szczelinę dylatacyjną
C. strzępia schodkowe
D. zaprawę plastyfikowaną
Szczelina dylatacyjna jest stosowana do kompensacji ruchów termicznych i osiadania budynków, ale nie jest odpowiednia do łączenia murów, które zostały wzniesione w różnym czasie. Jej głównym celem jest zapobieganie pękaniu materiałów budowlanych, a nie ich wzmocnienie. Użycie dylatacji w miejscach połączeń różnych etapów budowy może prowadzić do powstawania słabych punktów w konstrukcji. Podobnie, spoina zbrojona, która ma na celu wzmocnienie połączeń w elementach betonowych, nie jest najlepszym rozwiązaniem w przypadku murów, ponieważ nie zapewnia odpowiedniej elastyczności i może prowadzić do niepożądanych naprężeń. Z kolei zaprawa plastyfikowana, choć przydatna w wielu zastosowaniach, nie rozwiązuje problemu estetyki i stabilności połączenia murów. Często błędne przekonania wynikają z mylenia funkcji różnych materiałów i technik budowlanych, co prowadzi do stosowania niewłaściwych rozwiązań. W przypadku połączeń murów, które muszą wytrzymać różne obciążenia i ruchy, kluczowe jest zrozumienie, że zastosowanie odpowiednich technik, takich jak strzępia schodkowe, jest niezbędne dla zachowania integralności całej konstrukcji.

Pytanie 35

Na zdjęciu przedstawiono uszkodzenie warstwy zbrojącej (rozerwanie siatki) i warstwy izolacyjnej na elewacji budynku. Aby rozpocząć naprawę tego uszkodzenia, należy

Ilustracja do pytania
A. wyciąć siatkę i tynk na powierzchni całej ściany, na której znajduje się uszkodzenie.
B. wyciąć uszkodzony fragment ocieplenia i usunąć tynk wokół wyciętego fragmentu pasem o szerokości 10 cm.
C. przykleić fragment rozerwanej siatki do podłoża i uzupełnić fragment uszkodzonego styropianu.
D. okleić taśmą papierową miejsce uszkodzenia.
Twoja odpowiedź dotycząca wycięcia uszkodzonego fragmentu ocieplenia i usunięcia tynku w promieniu 10 cm jest zdecydowanie na miejscu. To naprawdę właściwe podejście, bo pozwala na solidne przygotowanie podłoża pod nową warstwę izolacyjną. W praktyce, coś takiego sprawia, że naprawiony fragment lepiej zespoli się z resztą elewacji, co jest kluczowe, jeśli zależy nam na długotrwałych efektach. Dodatkowo, usunięcie tynku wokół uszkodzenia zapobiega dalszym problemom, które mogą się pojawić z powodu złego przylegania materiałów. Jak mówi norma PN-EN 13499, dobre przygotowanie podłoża i używanie odpowiednich materiałów to podstawa, żeby cała konstrukcja dobrze funkcjonowała.

Pytanie 36

W trakcie murowania ścian w zimowych warunkach należy podgrzać

A. jedynie piasek
B. zaprawę po połączeniu wszystkich składników
C. tylko wodę i piasek
D. wszystkie składniki zaprawy przed ich połączeniem
Odpowiedzi wskazujące na podgrzewanie wszystkich składników zaprawy lub tylko piasku bazują na nieporozumieniu dotyczących właściwego procesu przygotowania zaprawy w zimie. Podgrzewanie wszystkich składników przed wymieszaniem, mimo że teoretycznie mogłoby wydawać się sensowne, może prowadzić do problemów z kontrolą temperatury oraz niejednorodnością mieszanki. W rzeczywistości kluczowe jest, aby podgrzać tylko wodę oraz piasek, ponieważ to właśnie te składniki mają największy wpływ na szybkość wiązania i jakość zaprawy. Podgrzewanie zaprawy po wymieszaniu wszystkich składników jest również niewłaściwym podejściem, ponieważ nie można w ten sposób efektywnie kontrolować temperatury i jednorodności mieszanki, co może prowadzić do powstawania pęknięć i osłabienia muru. Ogrzewanie tylko piasku nie zapewnia odpowiedniej temperatury dla wody, która jest kluczowym składnikiem zaprawy. W przypadku niskiej temperatury, zmniejszenie ilości ciepła w mieszance może skutkować opóźnieniami w procesie wiązania i zwiększeniem ryzyka uszkodzeń, co jest sprzeczne z najlepszymi praktykami budowlanymi. Dlatego ważne jest, aby rozumieć zasady zachowania ciepła i optymalizacji procesu murowania, aby uniknąć błędów, które mogą prowadzić do poważnych konsekwencji w późniejszym okresie eksploatacji budowli.

Pytanie 37

Jaką grubość powinny mieć spoiny wsporcze (poziome) w tradycyjnych murach wykonanych z cegły ceramicznej?

A. 15 - 20 mm
B. 10 - 17 mm
C. 6 - 9 mm
D. 3 - 5 mm
Prawidłowe określenie grubości spoin wspornych w murach ceramicznych ma kluczowe znaczenie dla stabilności i wytrzymałości budowli. Odpowiedzi, które wskazują na grubości takie jak 6-9 mm, 3-5 mm czy 15-20 mm, opierają się na niepełnym zrozumieniu wymagań dotyczących materiałów oraz ich właściwości. Zbyt małe spoiny, takie jak 3-5 mm czy 6-9 mm, mogą nie zapewniać odpowiedniego wypełnienia zaprawy, co prowadzi do słabego połączenia cegieł. Takie podejście naraża konstrukcję na różne uszkodzenia, takie jak pęknięcia czy odspojenie, które mogą mieć poważne konsekwencje w dłuższym okresie eksploatacji. Z drugiej strony, zbyt szerokie spoiny, takie jak 15-20 mm, mogą powodować problemy z przejmowaniem obciążeń oraz nieefektywne wykorzystanie materiałów budowlanych, co prowadzi do zwiększenia kosztów i potencjalnych defektów budowlanych. Właściwe dobieranie grubości spoin jest kluczowe w kontekście zgodności z normami budowlanymi, które zalecają określone grubości dla zapewnienia odpowiednich parametrów technicznych. Dlatego warto zapoznać się z obowiązującymi standardami, aby unikać typowych błędów projektowych i budowlanych, które mogą skutkować poważnymi problemami w przyszłości.

Pytanie 38

Na rysunku przedstawiono rzut pomieszczenia, w którym zaplanowano wyburzenie ściany. Oblicz powierzchnię ściany przeznaczonej do rozbiórki, jeżeli wysokość pomieszczenia wynosi 3,2 m.

Ilustracja do pytania
A. 10,88 m2
B. 8,96 m2
C. 5,44 m2
D. 8,00 m2
Poprawna odpowiedź to 5,44 m2, co wynika z właściwego obliczenia powierzchni ściany przeznaczonej do rozbiórki. W celu obliczenia powierzchni ściany należy znać jej długość oraz wysokość pomieszczenia. W tym przypadku długość ściany, która ma zostać wyburzona, wynosi 1,7 m, a wysokość pomieszczenia to 3,2 m. Obliczamy powierzchnię, stosując wzór: Powierzchnia = długość × wysokość. Podstawiając wartości, otrzymujemy: Powierzchnia = 1,7 m × 3,2 m = 5,44 m2. Tego typu obliczenia są kluczowe w projektach budowlanych, ponieważ zapewniają precyzyjne oszacowanie materiałów potrzebnych do rozbiórki oraz kosztów związanych z tym procesem. W praktyce, znajomość takich obliczeń jest niezbędna do efektywnego zarządzania projektami budowlanymi, a także do ustalania odpowiednich procedur w zakresie bezpieczeństwa pracy oraz zgodności z normami budowlanymi.

Pytanie 39

Który etap naprawy spękanego tynku przedstawiono na fotografii?

Ilustracja do pytania
A. Poszerzanie rysy.
B. Gruntowanie obrzeża rysy.
C. Nakładanie zaprawy szpachlowej.
D. Oczyszczanie obrzeża rysy.
Wybierając inną odpowiedź, można wpaść w pułapkę niewłaściwego postrzegania etapów naprawy tynku. Gruntowanie obrzeża rysy, oczyszczanie obrzeża rysy oraz nakładanie zaprawy szpachlowej to działania, które są ważne, ale nie mogą być wykonywane przed poszerzeniem rysy. Gruntowanie, na przykład, ma na celu przygotowanie powierzchni do nałożenia zaprawy, ale jeśli rysa nie jest najpierw odpowiednio poszerzona, grunt nie będzie miał szansy skutecznie związać się z tynkiem. Oczyszczanie obrzeża rysy to kolejny element, który następuje po poszerzeniu, ponieważ usunięcie luźnych fragmentów tynku i zanieczyszczeń jest niezbędne do prawidłowego wykonania naprawy. Nakładanie zaprawy szpachlowej przed poszerzeniem rysy prowadzi do ryzyka, że materiał nie wypełni pęknięcia we właściwy sposób, co może skutkować ponownym pękaniem w tym samym miejscu. Często spotykanym błędem jest również mylenie kolejności działań, co wynika z braku zrozumienia procesu naprawy i skutków niewłaściwych decyzji. Przestrzeganie standardów i dobrej praktyki w tym zakresie jest kluczowe, aby uniknąć kosztownych i czasochłonnych poprawek w przyszłości. Dlatego istotne jest, aby każdy etap naprawy był przeprowadzany w odpowiedniej kolejności oraz z zachowaniem odpowiednich technik i narzędzi.

Pytanie 40

Na podstawie fragmentu instrukcji określ, jakiej długości pręty zbrojeniowe należy umieścić pod otworem okiennym o szerokości 150 cm?

Instrukcja wykonywania ścian zewnętrznych
w systemie Ytong
(fragment)


„ (...) W strefach podokiennych należy umieszczać zbrojenie poziome (firmowe do spoin wspornych lub dwa pręty ze stali żebrowanej o średnicy 8 mm). Należy pamiętać, aby zbrojenie przedłużyć co najmniej 0,5 metra poza krawędzie otworów."(...)
A. 200 cm
B. 225 cm
C. 150 cm
D. 250 cm
Wybór długości 225 cm, 150 cm czy 200 cm jest niewłaściwy, ponieważ nie spełnia podstawowych wymagań dotyczących zbrojenia w konstrukcjach budowlanych. Pręty zbrojeniowe powinny zawsze wystawać poza zasięg otworu, aby móc skutecznie przenosić obciążenia oraz zapobiegać pęknięciom w obrębie konstrukcji. Odpowiedzi te mogą wynikać z błędnego zrozumienia roli zbrojenia w budownictwie. W przypadku 225 cm, istnieje brak wystarczającej długości prętów, co prowadzi do ryzyka niewłaściwego rozkładu naprężeń, a w rezultacie może skutkować uszkodzeniami strukturalnymi. Z kolei 150 cm to całkowita szerokość otworu, co jest błędnym podejściem, ponieważ nie uwzględnia dodatkowych wymagań dotyczących długości prętów zbrojeniowych, które powinny być dłuższe niż sama szerokość otworu. Odpowiedź 200 cm również nie zapewnia wystarczającego marginesu, co jest niezgodne z procedurami projektowymi. W praktyce, właściwe zbrojenie wymaga znajomości zasad inżynierii budowlanej i norm, które jasno określają potrzebne długości prętów zbrojeniowych oraz ich rozmieszczenie, aby zapewnić bezpieczeństwo i stabilność budowli.