Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 11 listopada 2025 20:16
  • Data zakończenia: 11 listopada 2025 20:21

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 1 rok
B. 3 lata
C. 2 lata
D. 4 lata
Instalacje elektryczne w pomieszczeniach wilgotnych, takich jak łazienki czy piwnice, wymagają szczególnej uwagi w kontekście ochrony przeciwporażeniowej. Wilgotność powietrza w takich miejscach może prowadzić do zwiększonego ryzyka porażenia prądem, dlatego też zgodnie z obowiązującymi normami i zaleceniami, takie instalacje powinny być poddawane kontroli co najmniej raz w roku. Regularne przeglądy pozwalają na wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe zabezpieczenia czy korozja elementów instalacji. Przykładem może być kontrola stanu gniazdek elektrycznych, które w miejscach o wysokiej wilgotności narażone są na działanie wody, co może prowadzić do zwarć. Warto również zwrócić uwagę na zastosowanie odpowiednich zabezpieczeń, takich jak różnicowoprądowe wyłączniki zabezpieczające (RCD), które mogą istotnie zwiększyć poziom bezpieczeństwa. Przestrzeganie tych zasad jest zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w miejscach narażonych na wilgoć.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakie nastąpi zmiana w przekładni napięciowej transformatora jednofazowego, jeśli podczas jego modernizacji nawinięto o 10% więcej zwojów po stronie niskiego napięcia, nie zmieniając ilości zwojów po stronie wysokiego napięcia?

A. Wzrośnie o 21%
B. Spadnie o 10%
C. Wzrośnie o 10%
D. Spadnie o 19%
Zrozumienie wpływu zmiany liczby zwojów na przekładnię napięciową transformatora jest kluczowe dla prawidłowego działania układów elektrycznych. Niepoprawne odpowiedzi często wynikają z mylnych założeń dotyczących zasad działania transformatorów. Na przykład, odpowiedzi sugerujące, że przekładnia napięciowa zwiększy się o 10% lub więcej, ignorują fundamentalną zasadę działania transformatora, która mówi o proporcjonalności między liczbą zwojów a napięciem. Przy dodaniu zwojów po stronie niskiego napięcia, wzrasta liczba zwojów uzwojenia, co z kolei zmienia stosunek zwojów z uzwojenia wysokiego napięcia. To prowadzi do zmniejszenia przekładni napięciowej, co jest kluczowym aspektem, który wiele osób pomija. Odpowiedź o zmniejszeniu przekładni o 19% także jest błędna, ponieważ nie bazuje na prostych zasadach matematycznych związanych z obliczeniami przekładni. Przekładnia transformatora nie jest liniową funkcją liczby zwojów; zmiana liczby zwojów w jednym uzwojeniu wpływa na całą relację z innym uzwojeniem. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych wniosków, obejmują nadmierne uproszczenie problemu lub błędne zakładanie, że zmiana w jednym z uzwojeń nie wpływa na całokształt działania transformatora. W praktyce, odpowiednia analiza wpływu zmian w transformatorach jest niezbędna dla zapewnienia ich efektywności i bezpieczeństwa w zastosowaniach przemysłowych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakie z wymienionych uszkodzeń można zidentyfikować podczas inspekcji instalacji elektrycznej?

A. Przerwanie pionowego uziomu w ziemi
B. Pogorszenie stanu mechanicznego połączeń przewodów
C. Zbyt długi czas reakcji wyłącznika różnicowoprądowego
D. Obniżenie rezystancji izolacji przewodów
Pogorszenie się stanu mechanicznego połączeń przewodów jest odpowiedzią prawidłową, ponieważ podczas oględzin instalacji elektrycznej można fizycznie ocenić jakość połączeń. W praktyce, mechaniczne uszkodzenia, takie jak luźne złącza, korozja czy pęknięcia, mogą prowadzić do zwiększonego oporu, co z kolei zwiększa ryzyko przegrzewania się i potencjalnych awarii. Standardy takie jak PN-IEC 60364 podkreślają znaczenie regularnych inspekcji połączeń w celu zapewnienia ich niezawodności. W sytuacjach awaryjnych, takich jak pożar spowodowany zwarciem, wiele incydentów można przypisać właśnie do niewłaściwego stanu połączeń. Przykładem skutków takiego pogorszenia może być utrata ciągłości elektrycznej prowadząca do nieprawidłowego działania urządzeń czy nawet ich uszkodzenia. Dlatego też, podczas oględzin, należy szczegółowo badać stan wszystkich połączeń, aby zapewnić bezpieczeństwo i sprawność całej instalacji elektrycznej.

Pytanie 11

Jaka jest maksymalna wartość skuteczna napięcia przemiennego, która może być wykorzystana do zasilania lamp oświetleniowych umieszczonych w strefie 0 łazienki?

A. 30 V
B. 12 V
C. 60 V
D. 25 V
Maksymalna dopuszczalna wartość skuteczna napięcia przemiennego do zasilania lamp oświetleniowych zainstalowanych w strefie 0 łazienki wynosi 12 V. Strefa 0 to obszar, w którym istnieje bezpośrednie ryzyko kontaktu z wodą, co stwarza większe zagrożenie porażeniem prądem. Z tego powodu normy elektryczne, takie jak PN-IEC 60364, nakładają restrykcje na używanie napięcia w tych strefach. Użycie niskiego napięcia, takiego jak 12 V, minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji, które mogłyby prowadzić do porażenia prądem. W praktyce, lampy LED, które są zaprojektowane do pracy w takich warunkach, zwykle wykorzystują zasilacze transformujące napięcie sieciowe na 12 V, a ich instalacja jest zgodna z zasadami ochrony przeciwporażeniowej. Ponadto, stosowanie niskonapięciowych źródeł światła w strefie 0 jest nie tylko zgodne z przepisami, ale również sprzyja efektywności energetycznej oraz wydłuża żywotność urządzeń oświetleniowych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

W jakim zakresie powinien znajdować się mierzony rzeczywisty prąd różnicowy IN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby był dopuszczony do użytkowania?

A. Od 0,3 IN do 0,8 IN
B. Od 0,3 IN do 1,0 IN
C. Od 0,5 IN do 1,0 IN
D. Od 0,5 IN do 1,2 IN
Pomierzony rzeczywisty prąd różnicowy I_N wyłącznika różnicowoprądowego typu AC powinien mieścić się w granicach od 0,5 I_N do 1,0 I_N, co zapewnia jego prawidłowe działanie i bezpieczeństwo użytkowania. Zgodnie z normami, takimi jak PN-EN 61008-1, wyłączniki różnicowoprądowe powinny wykazywać zdolność do prawidłowego działania w tym zakresie, aby skutecznie chronić przed porażeniem prądem elektrycznym. W praktyce, jeśli zmierzony prąd różnicowy mieści się w tych granicach, to oznacza, że urządzenie działa w optymalnym zakresie i jest w stanie skutecznie wykrywać niewielkie prądy upływowe, które mogą wskazywać na uszkodzenia izolacji lub inne problemy w instalacji elektrycznej. Przykładowo, w przypadku instalacji w budynkach mieszkalnych, regularne testowanie wyłączników różnicowoprądowych na poziomie 0,5 I_N do 1,0 I_N pozwala na zapewnienie bezpieczeństwa mieszkańców oraz utrzymanie instalacji w dobrym stanie technicznym.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie czynności związane z użytkowaniem urządzeń elektrycznych są obowiązkiem personelu odpowiedzialnego za te urządzenia?

A. Przeglądy wymagające demontażu
B. Zarządzanie czasem pracy
C. Włączanie i wyłączanie
D. Oględziny wymagające demontażu
Optymalizacja czasu pracy, przeglądy wymagające demontażu oraz oględziny wymagające demontażu nie są bezpośrednio związane z codziennymi zadaniami pracowników obsługi urządzeń elektrycznych. W kontekście pierwszej z wymienionych odpowiedzi, choć optymalizacja czasu pracy jest istotna w zarządzaniu procesami, nie jest to czynność, którą wykonują pracownicy obsługi bezpośrednio przy samym urządzeniu. Optymalizacja raczej odnosi się do analizy wydajności i strategii operacyjnych, które są podejmowane na poziomie zarządzania, a nie w codziennym użytkowaniu maszyn. W przypadku przeglądów i oględzin wymagających demontażu, są to skomplikowane zadania, które zazwyczaj są realizowane przez wyspecjalizowanych techników lub inżynierów, a nie pracowników zajmujących się obsługą. Obejmuje to takie czynności jak demontaż elementów maszyny w celu przeprowadzenia szczegółowych inspekcji, co wymaga zaawansowanej wiedzy technicznej oraz odpowiednich uprawnień. W praktyce, takie operacje powinny być zgodne z zaleceniami producenta i standardami bezpieczeństwa, aby zminimalizować ryzyko awarii lub uszkodzeń. Powszechnym błędem jest mylenie prac rutynowych związanych z obsługą z bardziej skomplikowanymi zadaniami konserwacyjnymi, co może prowadzić do niewłaściwego przypisania obowiązków oraz z potencjalnymi zagrożeniami dla bezpieczeństwa operacji. W związku z tym, kluczowe jest zachowanie jasnego podziału obowiązków i odpowiedzialności między różnymi poziomami personelu w zakładzie.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jakie jest najwyższe dozwolone różnicowe natężenie prądu znamionowego wyłącznika różnicowoprądowego w celu zapewnienia ochrony przeciwpożarowej?

A. 10 mA
B. 100 mA
C. 30 mA
D. 300 mA
Wybór wartości 30 mA, 100 mA lub 10 mA jako maksymalnego dopuszczalnego różnicowego prądu znamionowego dla wyłącznika różnicowoprądowego w kontekście ochrony przeciwpożarowej jest błędny. Prąd różnicowy 30 mA jest najczęściej stosowany w instalacjach do ochrony przed porażeniem elektrycznym ludzi, natomiast jego zastosowanie w kontekście ochrony przeciwpożarowej jest niewłaściwe. W tego typu sytuacjach, wyłączniki o wartości 30 mA mogą być niewystarczające, gdyż ich czułość nie jest zaprojektowana do detekcji prądów, które mogą prowadzić do zapłonu. Podobnie, wartości 100 mA i 10 mA również nie są adekwatne w kontekście ochrony przeciwpożarowej. Wyłączniki 100 mA mogą być stosowane w instalacjach przemysłowych, ale ich zastosowanie również nie zapewnia odpowiedniego poziomu ochrony przed ryzykiem pożaru, ponieważ nie są przeznaczone do wykrywania niewielkich prądów upływowych, które mogą być początkiem pożaru. Ponadto, wyłącznik 10 mA, choć oferuje wysoką czułość dla ochrony ludzi, nie jest rekomendowany dla ogólnej ochrony przeciwpożarowej, ponieważ jego zastosowanie w instalacjach elektrycznych o dużym obciążeniu może prowadzić do częstych fałszywych alarmów. W praktyce, właściwy dobór wyłączników różnicowoprądowych powinien opierać się na analizie ryzyk i zgodności z odpowiednimi normami, takimi jak normy IEC 61008 oraz IEC 60947, które definiują wymagania dotyczące bezpieczeństwa urządzeń elektrycznych. Właściwy dobór wartości prądu gwarantuje nie tylko bezpieczeństwo ludzi, ale również minimalizuje ryzyko strat materialnych związanych z pożarami wywołanymi przez instalacje elektryczne.

Pytanie 18

Przygotowując miejsce do przeprowadzania badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz wizualnej inspekcji i analizy stanu izolacji uzwojeń, uwzględnić między innymi realizację pomiarów

A. izolacji łożysk
B. rezystancji uzwojeń
C. drgań
D. charakterystyki stanu jałowego
Pomiar drgań, pomiar izolacji łożysk oraz charakterystyka stanu jałowego silnika indukcyjnego, choć są istotnymi aspektami diagnostyki maszyn, nie są kluczowymi krokami w ocenie stanu uzwojeń, które są centralnym elementem silnika. Pomiar drgań, który ma na celu ocenę stanu mechanicznego silnika, może wskazywać na niewyważenie lub uszkodzenia łożysk, ale nie dostarcza bezpośrednich informacji o stanie uzwojeń. Z kolei pomiar izolacji łożysk również nie odnosi się do stanu uzwojeń, a jedynie do ich izolacji elektrycznej. Charakterystyka stanu jałowego silnika, polegająca na analizie parametrów silnika przy braku obciążenia, dostarcza informacji o wydajności zespołu, ale również nie ocenia stanu uzwojeń. W związku z tym, koncentrowanie się na tych pomiarach w miejsce pomiaru rezystancji uzwojeń może prowadzić do błędnych wniosków dotyczących stanu technicznego silnika i potencjalnych zagrożeń, co jest sprzeczne z zasadami skutecznej diagnostyki i konserwacji maszyn elektrycznych. Zrozumienie, które parametry są kluczowe dla oceny stanu uzwojeń, jest istotne dla zapewnienia niezawodności pracy silnika oraz uniknięcia kosztownych awarii.

Pytanie 19

Jakie będą konsekwencje uszkodzenia izolacji podstawowej silnika indukcyjnego, gdy przewód PE zostanie odłączony od jego obudowy?

A. pojawienie się napięcia na obudowie silnika
B. obniżenie prędkości obrotowej wirnika
C. wzrost prędkości obrotowej wirnika
D. uruchomienie ochronnika przeciwprzepięciowego
W przypadku uszkodzenia izolacji podstawowej silnika indukcyjnego, błędne jest myślenie, że może to prowadzić do zmniejszenia lub zwiększenia prędkości obrotowej wirnika. Prędkość obrotowa wirnika w silniku indukcyjnym jest determinowana przez częstotliwość zasilania oraz liczbę biegunów w silniku, a nie przez stan izolacji. Zmiany w prędkości obrotowej są zazwyczaj wynikiem zmian w obciążeniu mechanicznym lub zmian w parametrach zasilania. Co więcej, odpowiedź sugerująca zadziałanie ochronnika przeciwprzepięciowego jest również niepoprawna, gdyż ochronniki te mają na celu zabezpieczenie przed przepięciami w sieci, a nie przed sytuacjami związanymi z uszkodzeniem izolacji. Typowym błędem myślowym w tym przypadku jest nieuwzględnienie funkcji ochronnej przewodu PE oraz pomijanie zagrożeń związanych z porażeniem prądem w takich sytuacjach. Dobre praktyki w kontekście bezpieczeństwa elektrycznego obejmują nie tylko właściwe podłączenie przewodów ochronnych, ale także regularne przeprowadzanie inspekcji oraz testowanie izolacji, aby zapewnić, że urządzenia są w pełni bezpieczne dla użytkowników.

Pytanie 20

W instalacji elektrycznej obwodu gniazd w przedpokoju wykorzystano przewód YDYt 3×2,5 mm2. Podczas wiercenia w murze pracownik przypadkowo przeciął przewód, uszkadzając jego dwie żyły. Jak należy prawidłowo usunąć tę usterkę?

A. Rozkuć tynk w miejscu uszkodzenia, zamontować dodatkową puszkę i w niej połączyć żyły.
B. Prowadzić nowy przewód pomiędzy najbliższymi puszkami, stosując pilota.
C. Rozkuć tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą, a następnie zatynkować ścianę.
D. Wyciągnąć jedynie uszkodzone żyły, zastępując je przewodem jednodrutowym.
Wybór odpowiedzi polegającej na rozkuwaniu tynku w miejscu uszkodzenia, zamontowaniu dodatkowej puszki oraz połączeniu żył jest najbardziej zalecanym sposobem naprawy uszkodzonego przewodu elektrycznego. Tego rodzaju działania są zgodne z obowiązującymi normami oraz najlepszymi praktykami w branży elektrycznej. W sytuacji, gdy przewód został uszkodzony, niezbędne jest zapewnienie odpowiednich warunków do naprawy, co może wiązać się z otwarciem ściany. Instalując dodatkową puszkę, zwiększamy bezpieczeństwo i ułatwiamy przyszłe prace serwisowe. Połączenie żył w puszce umożliwia także zastosowanie złączek, co jest rekomendowane w przypadku napraw elektrycznych. Dzięki temu połączenia są bardziej trwałe i estetyczne, a ryzyko ich przypadkowego usunięcia bądź zwarcia zostaje zminimalizowane. Takie podejście jest zgodne z europejskimi normami instalacji elektrycznych, które nakładają obowiązek używania osprzętu instalacyjnego w celu zwiększenia bezpieczeństwa użytkowania instalacji elektrycznych. W praktyce, zastosowanie dodatkowej puszki stanowi również zabezpieczenie przed przyszłymi uszkodzeniami mechanicznymi. Już na etapie projektowania, warto uwzględnić takie rozwiązania, by minimalizować ryzyko nieprzewidzianych awarii.

Pytanie 21

Jaki jest cel uziemienia ochronnego w instalacjach elektrycznych?

A. Redukcja zużycia energii elektrycznej w instalacjach elektrycznych
B. Zabezpieczenie ludzi przed porażeniem elektrycznym
C. Zwiększenie mocy znamionowej urządzeń elektrycznych
D. Poprawa jakości sygnału w instalacjach telekomunikacyjnych
Uziemienie ochronne ma na celu przede wszystkim zabezpieczenie ludzi przed porażeniem elektrycznym, co jest jednym z najważniejszych aspektów bezpieczeństwa w instalacjach elektrycznych. W praktyce oznacza to, że obudowy urządzeń elektrycznych są połączone z ziemią, co umożliwia szybkie odprowadzenie prądu w przypadku zwarcia lub uszkodzenia izolacji. Dzięki temu, jeżeli np. przewód fazowy zetknie się z metalową obudową urządzenia, prąd popłynie do ziemi, a nie przez ciało człowieka, co znacząco zmniejsza ryzyko porażenia. Takie uziemienie jest wymagane przez normy bezpieczeństwa elektrycznego, takie jak PN-IEC 60364. W skrócie, uziemienie ochronne działa jako środek zapobiegawczy, który minimalizuje ryzyko wypadków i zwiększa ogólne bezpieczeństwo użytkowników instalacji elektrycznych. Dodatkowo, uziemienie ochronne pomaga w stabilizacji napięcia sieci i eliminuje potencjalne różnice napięcia, co jest kluczowe w utrzymaniu właściwego działania urządzeń elektrycznych. To nie tylko praktyka, ale też standard w branży, który musi być przestrzegany, by zapewnić bezpieczne i efektywne działanie instalacji.

Pytanie 22

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB = 25 A, a maksymalna obciążalność długotrwała tych przewodów Idd = 30 A. Który z poniższych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed działaniem nadmiernego prądu?

A. B25
B. B32
C. B16
D. B20
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, w której prąd obciążenia wynosi 25 A, a obciążalność długotrwała przewodów to 30 A. Wyłączniki nadprądowe oznaczone literą 'B' charakteryzują się określoną charakterystyką działania, która zazwyczaj jest stosowana w instalacjach domowych i małych przedsiębiorstwach. W przypadku prądu znamionowego B25, wyłącznik ten będzie działał przy prądzie obciążenia do 25 A, co oznacza, że nie zadziała w warunkach normalnej pracy. Jednakże, dla prądów przekraczających ten poziom, wyłącznik zareaguje, zapewniając odpowiednią ochronę. W praktyce oznacza to, że B25 oferuje wystarczający margines bezpieczeństwa, aby chronić przewody przed przeciążeniem, które mogłoby prowadzić do uszkodzenia izolacji, przegrzania lub nawet pożaru. Stosując B25, przestrzegamy zasad dotyczących doboru zabezpieczeń, zgodnych z normami PN-IEC 60898, które rekomendują, aby prąd znamionowy wyłącznika był bliski wartości prądu obciążenia, ale nie mniejszy, aby uniknąć niepotrzebnych wyłączeń. Przykładowo, w instalacjach o dużych obciążeniach, takich jak warsztaty czy zakłady produkcyjne, dobór odpowiednich wyłączników nadprądowych jest kluczowy dla zapewnienia bezpieczeństwa i efektywności operacyjnej.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jaki przyrząd jest przeznaczony do bezpośredniego pomiaru współczynnika mocy w silniku indukcyjnym?

A. Watomierz
B. Częstościomierz
C. Fazomierz
D. Waromierz
Fazomierz jest narzędziem pomiarowym, które umożliwia bezpośredni pomiar współczynnika mocy silników indukcyjnych, co jest kluczowe w analizie efektywności energetycznej. Współczynnik mocy jest miarą, która informuje o proporcji mocy czynnej, która wykonuje pracę, do mocy pozornej, która jest dostarczana do obwodu. Użycie fazomierza pozwala na dokładne określenie, jak energia jest wykorzystywana przez silnik, co jest szczególnie istotne w kontekście optymalizacji pracy urządzeń oraz redukcji kosztów energii. W praktyce, podczas rutynowych kontroli silników w zakładach przemysłowych, fazomierz może być używany do oceny pracy silników, co pozwala na identyfikację problemów z ich wydajnością. Utrzymywanie współczynnika mocy na odpowiednim poziomie jest również zgodne z wymaganiami wielu dostawców energii, którzy mogą stosować kary finansowe dla użytkowników z niskim współczynnikiem mocy. Poznanie i zrozumienie zasad pomiaru współczynnika mocy jest zatem istotne dla inżynierów i techników zajmujących się zarządzaniem energią.

Pytanie 25

Zamiana przewodu OWY 2,5 mm2 na YKY 2,5 mm2 w odbiorniku ruchomym doprowadzi do

A. wzrostu wytrzymałości mechanicznej przewodu
B. zmiany wytrzymałości mechanicznej przewodu
C. podniesienia obciążalności prądowej
D. obniżenia obciążalności prądowej
Wybór odpowiedzi dotyczącej zmniejszenia wytrzymałości mechanicznej przewodu YKY 2,5 mm² w porównaniu do OWY 2,5 mm² jest trafny z kilku powodów. Przewody OWY, wykonane z miedzi i zwykle stosowane w instalacjach, charakteryzują się większą elastycznością i odpornością na uszkodzenia mechaniczne. W przeciwieństwie do nich, przewody YKY, chociaż mają lepsze właściwości izolacyjne i są bardziej odporne na działanie chemikaliów, są również sztywniejsze. Zmiana na przewód YKY w zastosowaniach, gdzie przewód jest narażony na ruch, może prowadzić do łatwiejszych uszkodzeń związanych z nadmiernym zginaniem czy przecieraniem. To bardzo ważne w kontekście projektowania instalacji elektrycznych, gdzie przewody często muszą być elastyczne, aby wytrzymać różne ruchy i wibracje. W praktyce, standardy takie jak PN-EN 60228 definiują różne parametry przewodów i ich zastosowań, co podkreśla znaczenie wyboru odpowiedniego typu w zależności od środowiska operacyjnego. Dlatego w kontekście zastosowania przewodów w instalacjach ruchomych, zmiana na YKY może nie być optymalnym rozwiązaniem.

Pytanie 26

Podczas wykonywania pomiarów okresowych na kablowej linii zasilającej 110 kV będzie mierzona rezystancja izolacji jednego z żył kabla w stosunku do pozostałych uziemionych żył. Jaki zakres pomiarowy powinien być ustawiony na urządzeniu pomiarowym, aby dokonany pomiar był poprawny?

A. 2000 MΩ, 2500 V
B. 200 MΩ, 1000 V
C. 2000 MΩ, 1000 V
D. 200 MΩ, 2500 V
Pomiar rezystancji izolacji kabli elektroenergetycznych jest kluczowym elementem diagnostyki stanu technicznego instalacji. Użycie zakresu 2000 MΩ oraz napięcia 2500 V zapewnia, że wykonany pomiar będzie zarówno bezpieczny, jak i precyzyjny. Wysoka wartość rezystancji izolacji (2000 MΩ) jest niezbędna w kontekście kabli wysokiego napięcia, gdzie izolacja musi utrzymywać wyjątkowo dużą odporność elektryczną, aby zapobiec przebiciom i innym awariom. Napięcie 2500 V jest standardowym wyborem w branży do testowania izolacji, ponieważ pozwala na uzyskanie wiarygodnych wyników, które odzwierciedlają rzeczywistą kondycję izolacji. Przykładowe zastosowanie to regularne pomiary przed rozpoczęciem sezonu zimowego, co pozwala na zidentyfikowanie ewentualnych defektów izolacji, które mogą prowadzić do awarii w trudnych warunkach atmosferycznych. Dobrą praktyką w branży elektroenergetycznej jest przestrzeganie norm IEC 60216 oraz PN-EN 60529, które określają wymagania dotyczące pomiarów izolacji.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Który z podanych łączników chroni przewody w systemach elektrycznych przed skutkami zwarć?

A. Wyłącznik nadprądowy
B. Przekaźnik termiczny
C. Stycznik
D. Odłącznik
Wyłącznik nadprądowy jest kluczowym elementem zabezpieczeń w instalacjach elektrycznych, którego głównym zadaniem jest ochrona przewodów przed skutkami zwarć oraz przeciążeń. Działa na zasadzie automatycznego przerwania obwodu, gdy prąd przekroczy określoną wartość nominalną. Dzięki temu minimalizuje ryzyko uszkodzenia instalacji oraz pożaru. W praktyce, wyłączniki nadprądowe są stosowane w różnych typach instalacji, od domowych po przemysłowe. Przykładem mogą być obwody zasilające urządzenia, które mogą generować nagłe skoki prądu, takie jak silniki elektryczne. Zgodnie z normą PN-EN 60898-1, wyłączniki nadprądowe powinny być dobierane w zależności od charakterystyki obciążenia oraz rodzaju zabezpieczanego obwodu, co zapewnia ich skuteczność i niezawodność w działaniu. Warto również wspomnieć, że stosowanie wyłączników nadprądowych jest częścią dobrych praktyk w zakresie projektowania instalacji elektrycznych, co znacząco przyczynia się do bezpieczeństwa użytkowania.

Pytanie 31

Który z poniższych przewodów powinien zastąpić uszkodzony przewód OW 4×2,5 mm2, który zasila silnik indukcyjny trójfazowy do napędu maszyny w warsztacie ślusarskim?

A. H03V2V2-F 3G2,5
B. H07VV-U 5G2,5
C. H07RR-F 5G2,5
D. H03V2V2H2-F 2X2,5
Odpowiedzi H07VV-U 5G2,5, H03V2V2-F 3G2,5 oraz H03V2V2H2-F 2X2,5 nie są odpowiednie do zastąpienia uszkodzonego przewodu OW 4×2,5 mm² w przypadku silnika indukcyjnego trójfazowego. Przewód H07VV-U 5G2,5 jest przewodem typu płaskiego, przeznaczonym głównie do instalacji stałych, co nie jest idealnym rozwiązaniem w warunkach warsztatowych, gdzie elastyczność przewodu jest kluczowa. Zastosowanie przewodu, który nie jest odporny na uszkodzenia mechaniczne, może prowadzić do jego uszkodzenia, a w konsekwencji do awarii silnika. Z kolei przewody H03V2V2-F 3G2,5 oraz H03V2V2H2-F 2X2,5 charakteryzują się mniejszą liczbą żył oraz niższymi parametrami elektrycznymi, co czyni je niewystarczającymi do zasilania silników o większej mocy, które wymagają solidnych połączeń trójfazowych. Wybierając przewody, istotne jest, aby zwracać uwagę na ich klasyfikację zgodnie z europejskimi normami, a także na zastosowanie w konkretnych warunkach. Ignorowanie tych aspektów prowadzi do niewłaściwego doboru materiałów oraz potencjalnych zagrożeń dla zdrowia i bezpieczeństwa w miejscu pracy.

Pytanie 32

Jaką wartość skuteczną ma przemienne napięcie dotykowe, które może być stosowane przez dłuższy czas w normalnych warunkach środowiskowych, dla oporu ciała ludzkiego wynoszącego około 1 kΩ?

A. 12 V
B. 60 V
C. 50 V
D. 25 V
Wartość skuteczna przemiennego napięcia dotykowego, która jest dopuszczalna długotrwale w warunkach normalnych dla rezystancji ciała ludzkiego wynoszącej około 1 kΩ, wynosi 50 V. To napotykane w praktyce napięcie odnosi się do wyjątkowo istotnych norm bezpieczeństwa elektrycznego, takich jak normy IEC 60479, które klasyfikują skutki działania prądu elektrycznego na ciało ludzkie. Napięcie dotykowe 50 V jest graniczną wartością, poniżej której ryzyko porażenia prądem jest znacznie mniejsze, a powyżej której mogą wystąpić niebezpieczne skutki. W praktyce oznacza to, że instalacje elektryczne, które są do 50 V, są uważane za bezpieczne przy normalnych warunkach użytkowania. Przykłady zastosowania tej wiedzy obejmują projektowanie systemów zasilania w budynkach mieszkalnych oraz w urządzeniach użytkowych, gdzie zastosowane napięcia nie powinny przekraczać tej wartości, aby zminimalizować ryzyko dla użytkowników, zwłaszcza w miejscach narażonych na wilgoć, takich jak łazienki czy kuchnie. Zrozumienie i przestrzeganie tych ograniczeń jest kluczowe dla bezpieczeństwa użytkowników oraz zgodności z obowiązującymi przepisami i normami branżowymi.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Które z poniższych wymagań nie jest konieczne do spełnienia przy wprowadzaniu do użytku po remoncie urządzenia napędowego z silnikiem trójfazowym Pn = 15 kW, Un = 400 V (Δ), fn = 50 Hz?

A. Silnik jest wyposażony w przełącznik gwiazda-trójkąt
B. Urządzenie spełnia kryteria efektywnego zużycia energii
C. Wyniki testów technicznych urządzenia są zadowalające
D. Moc silnika jest odpowiednia do wymagań napędzanego sprzętu
Odpowiedź wskazująca na to, że silnik jest wyposażony w przełącznik gwiazda-trójkąt jest poprawna, ponieważ to wymaganie nie jest konieczne do spełnienia przy przyjmowaniu urządzenia napędowego do eksploatacji po remoncie. Przełącznik gwiazda-trójkąt jest stosowany w silnikach elektrycznych, aby umożliwić ich rozruch przy niższej mocy znamionowej, co zmniejsza szczytowy prąd rozruchowy i zmniejsza obciążenie mechaniczne. Jednak nie jest to wymóg w kontekście przyjmowania do eksploatacji, ponieważ urządzenia mogą funkcjonować prawidłowo bez takiego przełącznika, zwłaszcza gdy nie ma potrzeby minimalizacji prądu rozruchowego. W praktyce, w zależności od zastosowania, niektóre silniki mogą być uruchamiane bezpośrednio, co jest całkowicie akceptowalne, zwłaszcza w zastosowaniach, gdzie napęd jest normalnie obciążony. Przykładem mogą być silniki napędzające wentylatory lub pompy, gdzie obciążenie jest od samego początku znaczące, co eliminuje potrzebę stosowania przełączników gwiazda-trójkąt.

Pytanie 35

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Jaka jest najbardziej prawdopodobna przyczyna zwiększonej wartości Zs w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość ZS:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
B. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
C. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
D. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
Poprawna odpowiedź dotyczy poluzowanego przewodu liniowego zasilającego gniazda w obwodzie, co może prowadzić do zwiększonej wartości impedancji pętli zwarcia (Zs). W praktyce, poluzowanie przewodu wpływa na zwiększenie rezystancji, co z kolei podnosi wartość Zs. W sytuacji awaryjnej, wysoka impedancja pętli zwarcia oznacza, że w przypadku wystąpienia zwarcia prąd zwarcia będzie niższy, co może prowadzić do opóźnienia w działaniu zabezpieczeń, takich jak wyłączniki nadprądowe, co naraża instalację na potencjalne uszkodzenia. Standardy, takie jak PN-IEC 60364, podkreślają znaczenie zapewnienia odpowiedniej wartości Zs dla bezpieczeństwa użytkowania instalacji. Warto regularnie przeprowadzać pomiary Zs w obiektach, aby upewnić się, że wartości te są zgodne z wymaganiami normatywnymi i praktykami branżowymi, co zapobiega ryzyku pożarów oraz uszkodzeń urządzeń elektrycznych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakie środki ochrony przed porażeniem stosuje się w przypadku dotyku bezpośredniego w urządzeniach pracujących do 1 kV?

A. Automatyczne odłączenie zasilania.
B. Wykorzystanie izolacji podwójnej lub wzmocnionej.
C. Izolacja elektryczna obwodu pojedynczego odbiornika.
D. Usytuowanie części czynnych poza zasięgiem dłoni.
Separacja elektryczna obwodu pojedynczego odbiornika, mimo że jest praktyką stosowaną w niektórych aplikacjach, nie jest wystarczającą metodą ochrony przed dotykiem bezpośrednim. W rzeczywistości, ta technika skupia się na oddzieleniu obwodów, co może zredukować ryzyko zwarcia, ale nie eliminuje go całkowicie w kontekście kontaktu z częściami czynymi. Samoczynne wyłączenie zasilania jest ważnym mechanizmem zabezpieczającym, jednak polega na detekcji awarii, co oznacza, że może nie zadziałać w przypadku natychmiastowego kontaktu z prądem przed jego wyłączeniem. Zastosowanie izolacji podwójnej lub izolacji wzmocnionej z pewnością zwiększa bezpieczeństwo, ale również w tym przypadku nie gwarantuje ono, że użytkownik nie będzie miał dostępu do części czynnych. Kiedy myślimy o zagrożeniach związanych z porażeniem prądem, kluczowe jest zrozumienie, że każda z tych metod ma swoje ograniczenia. Mylne jest zakładanie, że jedna strategia może w pełni zabezpieczyć użytkowników. W kontekście projektowania instalacji elektrycznych, należy zawsze dążyć do zastosowania kombinacji różnych środków ochrony, zapewniając kompleksowe podejście do bezpieczeństwa, co jest zgodne z normami takimi jak PN-EN 61140, które nakładają obowiązek stosowania wielu warstw ochrony dla minimalizacji ryzyka.

Pytanie 38

Kontrole instalacji elektrycznej w obiektach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co

A. 2 lata
B. 5 lat
C. 3 lata
D. 4 lata
Przeglądy instalacji elektrycznej w budynkach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co 5 lat, co jest zgodne z przepisami oraz normami zawartymi w Polskich Normach (PN). Regularne przeglądy mają na celu zapewnienie bezpieczeństwa użytkowników obiektów oraz zachowanie sprawności technicznej instalacji. W trakcie przeglądów dokonuje się oceny stanu technicznego instalacji, co pozwala na wczesne wykrycie ewentualnych usterek czy nieprawidłowości, które mogłyby prowadzić do niebezpiecznych sytuacji, takich jak pożar czy porażenie prądem. Przykładowo, w obiektach takich jak szkoły czy szpitale, gdzie bezpieczeństwo jest kluczowe, regularne przeglądy są niezbędne, aby spełniać wymogi prawa oraz zapewnić komfort i bezpieczeństwo ich użytkowników. Pamiętajmy, że odpowiedzialność za przeprowadzanie tych przeglądów spoczywa na właścicielu obiektu, który powinien współpracować z wyspecjalizowanymi firmami elektrycznymi, aby mieć pewność, że prace są prowadzone zgodnie z aktualnymi normami i najlepszymi praktykami.

Pytanie 39

Jakie będą konsekwencje zasilenia silnika asynchronicznego, którego znamionowa częstotliwość napięcia stojana wynosi 50 Hz, z sieci o częstotliwości 60 Hz?

A. Zmniejszenie prędkości obrotowej wirnika silnika
B. Zwiększenie prędkości obrotowej wirnika silnika
C. Nawrót wirnika silnika
D. Uszkodzenie wirnika silnika
Zwiększenie prędkości obrotowej wirnika silnika asynchronicznego zasilanego napięciem o częstotliwości 60 Hz w porównaniu do znamionowej częstotliwości 50 Hz jest wynikiem zjawiska zwanego poślizgiem. W przypadku silników asynchronicznych prędkość obrotowa wirnika jest zawsze niższa od prędkości synchronicznej, która zależy od częstotliwości zasilania oraz liczby par biegunów. Wzór na prędkość synchroniczną jest następujący: n_s = (120 * f) / P, gdzie n_s to prędkość synchroniczna w obrotach na minutę (RPM), f to częstotliwość zasilania w hercach, a P to liczba par biegunów. W przypadku zasilania 60 Hz, prędkość synchroniczna wzrośnie, co skutkuje wzrostem prędkości obrotowej wirnika. Praktycznie, dla silnika z dwiema parami biegunów zasilanego z sieci 50 Hz, prędkość będzie wynosić 1200 RPM, natomiast przy 60 Hz wzrośnie do 1440 RPM. Takie zjawisko może być wykorzystywane w aplikacjach, gdzie wymagana jest większa prędkość obrotowa, jednak należy pamiętać o możliwych konsekwencjach, takich jak zwiększone straty cieplne i ryzyko uszkodzenia silnika. W przemyśle standardem jest dostosowywanie zasilania do znamionowych parametrów silnika w celu zapewnienia jego długowieczności i efektywności.

Pytanie 40

Jakie przyrządy należy zastosować do określenia rezystancji uzwojeń w transformatorze średniej mocy metodą techniczną?

A. Woltomierz oraz watomierz
B. Woltomierz oraz omomierz
C. Amperomierz oraz woltomierz
D. Amperomierz oraz watomierz
Aby wyznaczyć rezystancję uzwojeń transformatora średniej mocy, kluczowe jest zastosowanie amperomierza i woltomierza. Amperomierz służy do pomiaru prądu płynącego przez uzwojenie, natomiast woltomierz mierzy napięcie na tym uzwojeniu. Zgodnie z prawem Ohma, rezystancję można obliczyć, dzieląc zmierzone napięcie przez zmierzony prąd (R = U/I). Takie podejście jest nie tylko zgodne z dobrymi praktykami inżynieryjnymi, ale również spełnia standardy zawarte w normach IEC dotyczących testowania transformatorów. W praktyce, w trakcie pomiarów, należy upewnić się, że wszystkie urządzenia są odpowiednio skalibrowane i przystosowane do zakresu mocy transformatora, co zapewni dokładność wyników. Ponadto, pomiary powinny być przeprowadzane w warunkach stabilnych, aby uniknąć zakłóceń mogących wpływać na dokładność odczytów. Takie procedury mogą być kluczowe dla oceny stanu technicznego transformatora oraz jego efektywności energetycznej.