Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 2 stycznia 2026 15:40
  • Data zakończenia: 2 stycznia 2026 15:53

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na której ilustracji przedstawiono symbol graficzny rozłącznika?

Ilustracja do pytania
A. Na ilustracji IV.
B. Na ilustracji II.
C. Na ilustracji I.
D. Na ilustracji III.
Wybór innej ilustracji jako symbolu graficznego rozłącznika może wynikać z nieporozumień dotyczących interpretacji symboli elektrycznych. Na ilustracji I, III i IV przedstawione są inne elementy schematów elektrycznych, które mają różne funkcje i zastosowania. Na przykład, ilustracja I może przedstawiać symbol przekaźnika, który ma za zadanie automatyczne włączanie i wyłączanie obwodów, co jest zupełnie inną funkcją niż rozłącznik. Z kolei ilustracja III może pokazować symbol bezpiecznika, który chroni obwód przed przeciążeniem, a ilustracja IV może przedstawiać symbol wyłącznika, który manualnie przerywa obwód. Tego rodzaju błędy w identyfikacji symboli wynikają często z braku znajomości standardów IEC 60617, które definiują różne symbole używane w schematach elektrycznych. Kluczowe jest zrozumienie, że każdy symbol ma swoje specyficzne oznaczenie oraz funkcję, dlatego mylenie ich może prowadzić do nieprawidłowych wniosków i potencjalnych zagrożeń w pracy z instalacjami elektrycznymi. Aby uniknąć tego typu pomyłek, zaleca się systematyczne zapoznawanie się z normami i dobrymi praktykami w zakresie projektowania oraz czytania schematów elektrycznych.

Pytanie 2

Jaki przewód na schemacie montażowym instalacji elektrycznej oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Neutralny.
B. Uziemiający.
C. Ochronny.
D. Wyrównawczy.
Odpowiedź "Ochronny" jest prawidłowa, ponieważ symbol przedstawiony na rysunku odnosi się do przewodu ochronnego PE (Protective Earth). Przewód ten jest kluczowym elementem instalacji elektrycznej, mającym na celu zabezpieczenie użytkowników przed porażeniem prądem elektrycznym. W sytuacji awaryjnej, przewód ochronny odprowadza niebezpieczne napięcie do ziemi, co znacząco zmniejsza ryzyko porażenia. W standardach, takich jak Polska Norma PN-IEC 60445:2017, przewód ten powinien być jednoznacznie oznaczony w schematach montażowych, co ułatwia identyfikację i prawidłowy montaż instalacji. Przykładowo, w przypadku uszkodzenia izolacji urządzenia elektrycznego, prawidłowe podłączenie przewodu ochronnego zapewnia, że prąd nie przepłynie przez ciało użytkownika, lecz zostanie skierowany do ziemi. Dzięki temu, stosowanie przewodów ochronnych zgodnie z normami jest fundamentem bezpieczeństwa w każdej instalacji elektrycznej.

Pytanie 3

Na której ilustracji przedstawiono symbol graficzny przewodu neutralnego?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 1.
C. Na ilustracji 3.
D. Na ilustracji 2.
Symbol graficzny przewodu neutralnego, oznaczony jako linia z kropką na końcu, jest kluczowym elementem w instalacjach elektrycznych. Na ilustracji 1 widzimy ten symbol, co potwierdza jego zgodność z międzynarodowymi standardami, takimi jak IEC 60446, które regulują oznaczanie przewodów i kolorów w systemach elektroenergetycznych. Przewód neutralny odgrywa ważną rolę w systemie elektrycznym, odpowiedzialny za zamknięcie obwodu i zapewnienie równowagi w instalacji. W praktyce, poprawne zidentyfikowanie przewodu neutralnego jest niezwykle istotne, aby uniknąć błędów w podłączaniu urządzeń oraz zapewnić bezpieczeństwo użytkowników. Wiedza o tym, jak rozpoznać symbol przewodu neutralnego, wspiera właściwe wykonywanie instalacji elektrycznych i konserwacji, co jest zgodne z najlepszymi praktykami branżowymi. Dodatkowo, zrozumienie ról poszczególnych przewodów w obwodzie elektrycznym, takich jak przewód fazowy oraz przewód ochronny, przyczynia się do tworzenia bezpiecznych i efektywnych instalacji.

Pytanie 4

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
B. Zbyt duża moc urządzenia
C. Zbyt duży przekrój uszkodzonego przewodu
D. Luźne połączenie w listwie neutralnej
Poluzowane połączenie w listwie neutralnej jest najczęstszą przyczyną nadpalenia izolacji przewodów. Gdy połączenie nie jest wystarczająco mocne, pojawia się opór, co prowadzi do powstawania ciepła. Z czasem, to ciepło może spalić izolację przewodu, co jest szczególnie niebezpieczne, ponieważ może prowadzić do zwarcia lub pożaru. W praktyce, regularne sprawdzanie i dokręcanie połączeń elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa instalacji. Zgodnie z wytycznymi normy PN-IEC 60364, należy zwracać szczególną uwagę na jakości wykonania połączeń, aby zminimalizować ryzyko awarii. W przypadku stwierdzenia poluzowanych połączeń, zaleca się ich niezwłoczne naprawienie oraz przegląd całej instalacji elektrycznej, aby upewnić się, że wszystkie połączenia są prawidłowo wykonane. Przykładowo, w instalacjach przemysłowych stosowanie odpowiednich narzędzi do dokręcania oraz regularne przeglądy mogą znacznie zredukować ryzyko wystąpienia problemów związanych z poluzowanymi połączeniami.

Pytanie 5

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc?

Ilustracja do pytania
A. Schemat 2.
B. Schemat 1.
C. Schemat 3.
D. Schemat 4.
Schemat 4 to idealne rozwiązanie, gdy chcemy sterować oświetleniem z dwóch miejsc. Używa on przełączników schodowych, które są standardem w takich sytuacjach. Dzięki nim możemy włączać i wyłączać jedno źródło światła z różnych lokalizacji, co jest super praktyczne, zwłaszcza w korytarzach czy na schodach. Te przełączniki są zaprojektowane tak, żeby użytkownik nie miał problemu z zarządzaniem światłem, a ich użycie jest zgodne z normami, jak na przykład PN-EN 60669-1, które mówią o urządzeniach do sterowania oświetleniem. Dodatkowo, takie rozwiązanie pomaga oszczędzać energię, bo można łatwo wyłączyć światło, gdy nie jest potrzebne. W praktyce, dzięki takiemu ustawieniu, zwiększa się też bezpieczeństwo, bo nie trzeba chodzić w ciemności. Instalacja takich przełączników jest dosyć prosta, o ile stosuje się odpowiednie zasady, co czyni je atrakcyjną opcją dla wielu użytkowników.

Pytanie 6

Do zacisku odbiornika podłączonego na stałe w instalacji TN-S oznaczonego symbolem graficznym przedstawionym na rysunku należy podłączyć przewód

Ilustracja do pytania
A. wyrównawczy.
B. ochronny.
C. odgromowy.
D. neutralny.
Wybór odpowiedzi "ochronny" jest trafiony! W instalacji TN-S przewód, który widzisz na rysunku, to rzeczywiście przewód ochronny (PE). Jego głównym zadaniem jest ochrona użytkowników przed porażeniem prądem. Dzięki temu przewód odprowadza niebezpieczne napięcia do ziemi, co zmniejsza ryzyko wypadków. W systemach TN-S przewód ochronny jest oddzielony od neutralnego (N), co jest zgodne z zasadami bezpieczeństwa. Ważne, żeby ten przewód był dobrze podłączony, bo wtedy ochronne urządzenia, jak wyłącznik różnicowoprądowy, będą działać tak jak powinny. Dobrze jest też regularnie sprawdzać, czy przewody ochronne są w dobrym stanie, żeby mieć pewność, że ich działanie jest skuteczne. Jeśli chcesz bardziej zgłębić temat, popatrz na normy PN-IEC 60364 i PN-HD 60364 – tam znajdziesz konkretne wytyczne dotyczące instalacji elektrycznych.

Pytanie 7

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 1,15 Ω
B. 2,00 Ω
C. 2,30 Ω
D. 3,83 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, dla zapewnienia skutecznej ochrony przeciwporażeniowej przy uszkodzeniu izolacji, wynosi 1,15 Ω. Wartość ta jest kluczowa, ponieważ umożliwia szybkie zadziałanie instalacyjnego wyłącznika nadprądowego, takiego jak C20, który ma zdolność wyłączenia w ciągu 0,4 sekundy przy prądzie zwarciowym wynoszącym 5 kA. W praktyce, impedancja pętli zwarcia powinna być obliczana zgodnie z obowiązującymi normami, takimi jak PN-EN 60364, które określają zasady projektowania i wykonawstwa instalacji elektrycznych. Dla wyłącznika C20, wartość impedancji pętli zwarcia nie powinna przekraczać 1,15 Ω, aby zapewnić odpowiednią ochronę przed porażeniem prądem elektrycznym. Przykładowo, w instalacjach zasilających do budynków mieszkalnych, regularne pomiary impedancji pętli zwarcia są niezbędne do utrzymania bezpieczeństwa użytkowników.

Pytanie 8

Przyporządkuj rodzaje trzonków świetlówek kompaktowych, w kolejności jak na rysunku.

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Odpowiedź B. jest poprawna, ponieważ zgodnie z przedstawionym rysunkiem, trzonki świetlówek kompaktowych są uporządkowane w oparciu o ich standardy montażowe. Trzonek B22d, który znajduje się w świetlówce nr 2, jest powszechnie stosowany w oświetleniu domowym, ze względu na łatwość w instalacji i szeroką dostępność. Użytkownicy często spotykają się z tym rodzajem trzonka w żarówkach przeznaczonych do lamp sufitowych oraz lamp stołowych. W praktyce, znajomość typów trzonków świetlówek jest kluczowa podczas zakupu nowych źródeł światła, ponieważ błędny wybór może prowadzić do problemów z kompatybilnością. Warto zaznaczyć, że różne trzonki mają różne zastosowania, co wpływa na efektywność i bezpieczeństwo użycia. Trzonek E14, E27 oraz GU10 również mają swoje specyficzne przeznaczenie i zastosowania, dlatego ważne jest, aby zrozumieć ich różnice oraz odpowiednio je dobierać, aby zapewnić optymalne warunki oświetleniowe w różnych przestrzeniach.

Pytanie 9

Do wykonywania której czynności przeznaczone jest narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Odizolowywania żył przewodów.
B. Przecinania karbowanych rur winidurowych.
C. Mocowania przewodów wtynkowych do ściany.
D. Zaciskania tulejek na końcówkach przewodów.
Narzędzie przedstawione na zdjęciu to automatyczne szczypce do ściągania izolacji, które służą do odizolowywania żył przewodów elektrycznych. Dzięki zastosowaniu tego narzędzia, proces odizolowywania jest nie tylko szybszy, ale także bardziej precyzyjny, co minimalizuje ryzyko uszkodzenia samego przewodu. W praktyce narzędzie to jest niezwykle przydatne w pracach związanych z instalacjami elektrycznymi, gdzie dokładność i bezpieczeństwo są kluczowe. Używając szczypiec do ściągania izolacji, elektrycy mogą skutecznie przygotować przewody do podłączeń, co jest szczególnie ważne w kontekście standardów bezpieczeństwa takich jak normy IEC 60364, które określają wymagania dla instalacji elektrycznych niskiego napięcia. Dobre praktyki w branży zalecają również, aby zawsze używać odpowiednich narzędzi dla konkretnego zadania, co nie tylko zwiększa efektywność pracy, ale także zapewnia bezpieczeństwo operacji. Narzędzie to jest zaprojektowane tak, aby dostosowywać się do różnych średnic przewodów, co czyni je uniwersalnym rozwiązaniem dla elektryków.

Pytanie 10

Metodą oceny efektywności połączeń wyrównawczych powinien być pomiar napięć

A. dotykowych
B. krokowych
C. rażeniowych
D. skutecznych
Pomiar napięć skutecznych jest naprawdę ważny, jeśli chodzi o ocenę, jak dobrze działają połączenia wyrównawcze. Dzięki temu możemy zobaczyć, jak dobrze system radzi sobie z ewentualnymi różnicami napięć w instalacji elektrycznej. Połączenia wyrównawcze mają na celu zminimalizowanie ryzyka porażeń prądem, więc istotne jest, żeby te różnice były na niskim poziomie. Napięcia skuteczne, czyli wartości RMS, pokazują nam, jak system działa w rzeczywistości, co bardzo ułatwia ocenę skuteczności zabezpieczeń. Można to zastosować na przykład w instalacjach przemysłowych, gdzie ochrona ludzi i sprzętu jest kluczowa. Normy, jak PN-IEC 60364, podkreślają, jak ważne są regularne inspekcje i pomiary, żeby mieć pewność, że systemy bezpieczeństwa działają prawidłowo i są w dobrym stanie.

Pytanie 11

Na rysunku przedstawiono sposób przeprowadzenia pomiaru

Ilustracja do pytania
A. napięcia dotykowego.
B. rezystancji uziemienia.
C. prądu udarowego zwarciowego.
D. impedancji pętli zwarcia.
Pomiar rezystancji uziemienia, jak przedstawiono na zdjęciu, jest kluczowym aspektem zapewnienia bezpieczeństwa w instalacjach elektrycznych. Uziemienie ma na celu ochronę ludzi oraz sprzętu przed skutkami awarii, a jego skuteczność można ocenić jedynie poprzez dokładne pomiary. Wykorzystanie miernika do pomiaru rezystancji uziemienia pozwala na stwierdzenie, czy wartości rezystancji mieszczą się w granicach określonych norm, takich jak PN-EN 50522, która wskazuje, że rezystancja uziemienia powinna być niższa niż 10 Ω dla obiektów użyteczności publicznej. Prawidłowe uziemienie minimalizuje ryzyko porażenia prądem elektrycznym oraz poprawia stabilność systemu zasilania. W praktyce, pomiar ten jest szczególnie istotny podczas instalacji nowych systemów elektrycznych, ich modernizacji, a także w okresowych inspekcjach, które powinny być przeprowadzane zgodnie z wymaganiami prawa budowlanego oraz normami ochrony przeciwporażeniowej. Ważne jest, aby każdy instalator posiadał wiedzę o technikach pomiarowych oraz umiał interpretować wyniki w kontekście zapewnienia bezpieczeństwa operacji elektrycznych.

Pytanie 12

Jaką metodę należy zastosować do bezpośredniego pomiaru rezystancji przewodów?

A. watomierz oraz amperomierz
B. cyfrowy watomierz
C. amperomierz oraz woltomierz
D. analogowy omomierz
Omomierz analogowy jest specjalistycznym narzędziem pomiarowym, które pozwala na dokładne mierzenie rezystancji przewodów. Jego działanie opiera się na zastosowaniu prądu stałego, który przepływa przez przewód, a następnie mierzy spadek napięcia. W oparciu o te dane oblicza się wartość rezystancji zgodnie z prawem Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce omomierze są często wykorzystywane do lokalizacji i diagnozy usterek w instalacjach elektrycznych, oceny stanu przewodów w urządzeniach oraz podczas wykonywania przeglądów technicznych. Stosowanie omomierza analogowego ma swoje zalety, takie jak prostota obsługi oraz bezpośrednie odczyty na skali, co może być korzystne w przypadku szybkich pomiarów. Dobrym przykładem zastosowania omomierza jest kontrola przewodów uziemiających, gdzie niska rezystancja jest kluczowa dla bezpieczeństwa systemów elektrycznych, co jest zgodne z normami PN-EN 62305 dotyczącymi ochrony odgromowej i uziemień.

Pytanie 13

Narzędziem niezbędnym do wymiany łącznika pokazanego na zdjęciu jest wkrętak

Ilustracja do pytania
A. płaski.
B. z bitem M8
C. PH2
D. TROX
Prawidłowa odpowiedź to wkrętak płaski, który jest narzędziem odpowiednim do wymiany łącznika pokazanego na zdjęciu. Wyłączniki instalacyjne wyposażone w zacisk śrubowy wymagają użycia wkrętaka płaskiego, ponieważ jego konstrukcja pozwala na łatwe i precyzyjne wkręcanie lub wykręcanie śrub. W praktyce, wkrętak płaski jest najczęściej wykorzystywany w instalacjach elektrycznych, gdzie śruby mocujące są powszechnie stosowane. W sytuacjach, gdy zachodzi potrzeba wymiany wyłączników, zastosowanie odpowiedniego narzędzia jest kluczowe dla zapewnienia bezpieczeństwa oraz poprawności wykonania instalacji. Warto również dodać, że wkrętaki płaskie są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do konkretnego typu śrub. W przypadku niewłaściwego narzędzia może dojść do uszkodzenia śruby lub samego wyłącznika, co prowadzi do dodatkowych kosztów i ryzyka w zakresie bezpieczeństwa elektrycznego.

Pytanie 14

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
B. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
C. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
D. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
Odpowiedź dotycząca zasilania gniazd wtyczkowych każdego pomieszczenia z osobnego obwodu jest prawidłowa, ponieważ takie podejście nie jest zgodne z zaleceniami w zakresie projektowania instalacji elektrycznych w budynkach mieszkalnych. W praktyce, stosowanie osobnych obwodów dla każdego pomieszczenia może prowadzić do nadmiernych kosztów i skomplikowania instalacji. Zgodnie z Polską Normą PN-IEC 60364-1, obwody powinny być projektowane w taki sposób, aby zapewnić bezpieczeństwo i funkcjonalność, a nie każdy obwód powinien być dedykowany dla jednego pomieszczenia. W standardowych rozwiązaniach gniazda wtyczkowe w poszczególnych pomieszczeniach, jak kuchnia czy salon, mogą być podłączane do wspólnych obwodów, co jest bardziej efektywne, a także ułatwia ewentualne naprawy czy modernizacje. Przykładowo, w kuchni, gdzie występuje wiele odbiorników, stosuje się osobny obwód, ale gniazda w innych pomieszczeniach mogą być zasilane z jednego wspólnego obwodu, co zmniejsza ilość potrzebnych przewodów oraz urządzeń zabezpieczających.

Pytanie 15

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. XzTKMXpw
B. YADY
C. LgY
D. DYt
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 16

Na podstawie przedstawionego schematu połączeń określ, kiedy nastąpi zadziałanie wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. Po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika.
B. Po załączeniu wyłącznika w obwodzie gniazd pokoi.
C. Po załączeniu wyłącznika w obwodzie łazienki i podłączeniu odbiornika.
D. Po załączeniu wyłącznika w obwodzie łazienki.
Zrozumienie zasad działania wyłączników różnicowoprądowych jest kluczowe dla bezpieczeństwa użytkowników instalacji elektrycznych. Odpowiedzi, które nie uwzględniają podłączenia odbiornika lub odnoszą się tylko do samego załączenia wyłącznika, nie uwzględniają rzeczywistych warunków, w jakich wyłącznik różnicowoprądowy zadziała. Wyłącznik różnicowoprądowy jest zaprojektowany do wykrywania różnicy prądów między przewodami fazowym a neutralnym. Kiedy obwód jest załączony, ale nie ma podłączonego odbiornika, nie występuje żaden przepływ prądu przez urządzenie, co oznacza, że nie ma też ryzyka upływu prądu. Ta sytuacja prowadzi do błędnych wniosków, sugerujących, że sama aktywacja wyłącznika w obwodzie gniazd pokoi wystarczy do zadziałania RCD. W rzeczywistości, by wyłącznik mógł zadziałać, muszą być spełnione określone warunki, w tym obecność odbiornika, który może generować upływ prądu. Innym częstym błędem myślowym jest mylenie działania RCD z innymi zabezpieczeniami, takimi jak bezpieczniki, które działają na zasadzie przeciążenia prądowego. Zrozumienie tych różnic jest kluczowe dla bezpiecznego korzystania z instalacji elektrycznych, zgodnie z normami, takimi jak PN-EN 61008, które szczegółowo opisują wymagania dla wyłączników różnicowoprądowych. W związku z tym, odpowiedzi, które ignorują te fundamentalne zasady, mogą prowadzić do niebezpiecznych sytuacji w rzeczywistych instalacjach elektrycznych.

Pytanie 17

Symbol graficzny przedstawiony na rysunku oznacza łącznik

Ilustracja do pytania
A. dwubiegunowy.
B. schodowy.
C. świecznikowy.
D. hotelowy.
Wybór jednego z pozostałych typów łączników, takich jak dwubiegunowy, hotelowy czy świecznikowy, prowadzi do nieporozumień dotyczących ich funkcji oraz zastosowania. Łącznik dwubiegunowy, w przeciwieństwie do schodowego, służy głównie do włączania i wyłączania zasilania w obwodzie, ale nie umożliwia zdalnej kontroli z dwóch miejsc. Jego zastosowanie zazwyczaj ogranicza się do pojedynczego miejsca, co nie jest odpowiednie w kontekście schodów lub długich korytarzy. Z kolei łącznik hotelowy jest wykorzystywany w specyficznych aplikacjach w hotelach, gdzie ma inną funkcjonalność, najczęściej związaną z systemami zarządzania pokojami. Natomiast łącznik świecznikowy, używany do podłączenia świeczników i lamp, również nie spełnia roli łącznika schodowego, ponieważ nie jest skonstruowany do obsługi oświetlenia z dwóch miejsc jednocześnie. Wybierając nieodpowiedni typ łącznika, można narazić użytkowników na niewygodę lub wręcz niebezpieczeństwo, jeśli oświetlenie będzie nietypowo skonfigurowane. Użycie właściwego oznaczenia ma kluczowe znaczenie w zapewnieniu poprawności instalacji elektrycznej, co jest zgodne z obowiązującymi normami branżowymi.

Pytanie 18

Które wyprowadzenia czujnika kontroli i zaniku faz należy włączyć szeregowo z cewką stycznika zgodnie z przedstawionymi schematami z jego instrukcji fabrycznej?

Ilustracja do pytania
A. 1 i 4
B. 4 i 8
C. 7 i 8
D. 1 i 7
Odpowiedź 7 i 8 jest prawidłowa, ponieważ zgodnie z przedstawionymi schematami w instrukcji fabrycznej, te wyprowadzenia czujnika kontroli i zaniku faz są zaprojektowane do szeregowego połączenia z cewką stycznika. W praktyce oznacza to, że czujnik monitoruje obecność wszystkich faz w układzie. W przypadku zaniku jednej z faz, obwód jest otwierany, co skutkuje deaktywacją cewki stycznika i wyłączeniem silnika. Takie rozwiązanie jest zgodne z najlepszymi praktykami w zakresie automatyki przemysłowej, gdzie ochrona silników przed pracą w warunkach braku fazy jest kluczowa dla ich żywotności i bezpieczeństwa operacyjnego. Zastosowanie czujników zaniku faz w układach zasilania nie tylko zabezpiecza urządzenia przed uszkodzeniami, ale również zwiększa efektywność operacyjną całego systemu, zapewniając ciągłość pracy. Warto zaznaczyć, że zgodność z normami bezpieczeństwa, takimi jak IEC 60204-1, staje się niezbędna w projektowaniu takich układów, aby spełniały one wymogi dotyczące bezpieczeństwa i niezawodności.

Pytanie 19

Która z podanych metod realizacji instalacji elektrycznych jest przeznaczona do użycia w lokalach mieszkalnych?

A. W listwach przypodłogowych
B. W kanałach podłogowych
C. Na drabinkach
D. Przewodami szynowymi
Prowadzenie instalacji elektrycznych za pomocą przewodów szynowych, kanałów podłogowych czy drabinek jest rozwiązaniem stosowanym w innych kontekstach, które nie zawsze są zgodne z wymogami dla pomieszczeń mieszkalnych. Przewody szynowe, choć często wykorzystywane w obiektach komercyjnych i przemysłowych, nie są zalecane do stosowania w mieszkaniach, ponieważ mogą prezentować ryzyko w zakresie estetyki, a także bezpieczeństwa użytkowników. Mieszkania zazwyczaj wymagają bardziej stonowanego i zabezpieczonego podejścia do instalacji elektrycznych. Kanały podłogowe, chociaż mogą być użyteczne w niektórych sytuacjach, mają ograniczenia związane z dostępnością i konserwacją. Ponadto ich stosowanie może prowadzić do problemów z wilgocią i zanieczyszczeniami, co z kolei wpływa negatywnie na trwałość instalacji. Drabinki, z drugiej strony, są stosowane głównie w obszarach przemysłowych i wymagają dużo przestrzeni, co czyni je niepraktycznymi dla mieszkań o ograniczonym metrażu. Typowy błąd myślowy to przekonanie, że jedynie funkcjonalność instalacji ma znaczenie, podczas gdy w kontekście mieszkań kluczowe są również aspekty estetyczne i bezpieczeństwa. Należy zatem pamiętać, że prowadzenie instalacji elektrycznych w pomieszczeniach mieszkalnych powinno być starannie przemyślane, uwzględniając zarówno przepisy, jak i potrzeby użytkowników.

Pytanie 20

Jaką minimalną wartość prądu powinno mieć wykonanie pomiaru ciągłości elektrycznej przewodów ochronnych w głównych i dodatkowych połączeniach wyrównawczych oraz przewodów czynnych w przypadku obwodów odbiorczych typu pierścieniowego?

A. 100 mA
B. 200 mA
C. 150 mA
D. 500 mA
Pomiar ciągłości elektrycznej przewodów ochronnych jest kluczowym aspektem zapewnienia bezpieczeństwa instalacji elektrycznych. W przypadku połączeń wyrównawczych oraz pierścieniowych obwodów odbiorczych, zastosowanie prądu o wartości co najmniej 200 mA jest zgodne z normami oraz dobrymi praktykami branżowymi. Użycie takiej wartości prądu pozwala na dokładne sprawdzenie ciągłości przewodów ochronnych, co jest niezbędne do zapewnienia właściwego działania systemu ochrony przeciwporażeniowej. W praktyce oznacza to, że w przypadku wykrycia jakiejkolwiek przerwy w przewodach ochronnych, prąd o tej wartości będzie w stanie wywołać odpowiednią reakcję w zabezpieczeniach, takich jak wyłączniki różnicowoprądowe. Taki pomiar powinien być przeprowadzany regularnie w ramach przeglądów okresowych instalacji elektrycznych, aby zminimalizować ryzyko uszkodzeń i zagrożeń dla użytkowników. Warto również podkreślić, że zgodnie z normą PN-EN 61557-4, pomiary te powinny być wykonywane przez wykwalifikowany personel z użyciem odpowiedniego sprzętu pomiarowego.

Pytanie 21

Z instrukcji obsługi przedstawionego na ilustracji miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego

Ilustracja do pytania
A. cyfrą 2 przy zwartych przewodach pomiarowych.
B. cyfrą 1 przy zwartych przewodach pomiarowych.
C. cyfrą 1 przy odłączonych przewodach pomiarowych.
D. cyfrą 2 przy odłączonych przewodach pomiarowych.
Poprawna odpowiedź to cyfrą 2 przy zwartych przewodach pomiarowych. Wyzerowanie omomierza jest kluczowym krokiem przed pomiarem rezystancji, ponieważ pozwala na zredukowanie wpływu wszelkich błędów pomiarowych. Przy zwartych przewodach pomiarowych nie ma żadnej rezystancji, co umożliwia ustawienie wskazówki miernika na 0 Ω. Dzięki temu uzyskujemy dokładniejsze wyniki pomiarów. W praktyce, wiele urządzeń pomiarowych, w tym profesjonalne omomierze, mają wbudowane funkcje umożliwiające automatyczne wyzerowanie, co jest zgodne z najlepszymi praktykami pomiarowymi. Prawidłowe wyzerowanie miernika przed przystąpieniem do pomiarów jest również zgodne z normami branżowymi, co podkreśla znaczenie tego procesu w zapewnieniu dokładności i wiarygodności wyników. Pamiętaj, że pomiar bez wcześniejszego wyzerowania może prowadzić do nieprecyzyjnych odczytów, co w kontekście pracy inżynierskiej lub domowego majsterkowania ma istotne znaczenie.

Pytanie 22

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 20-30 krotności prądu znamionowego
B. 3-5 krotności prądu znamionowego
C. 5-10 krotności prądu znamionowego
D. 10-20 krotności prądu znamionowego
Wybór niepoprawnej odpowiedzi na temat obszaru zadziałania wyzwalaczy elektromagnetycznych może wynikać z nieporozumień dotyczących sposobu działania wyłączników nadprądowych. Wyłączniki charakterystyki B, które są najczęściej stosowane w instalacjach domowych i biurowych, działają na zasadzie wykrywania prądów zwarciowych w określonym przedziale, który nie obejmuje wartości 5-10 ani 10-20 krotności prądu znamionowego. Takie podejście może prowadzić do mylnego przekonania, że wyłączniki te mają szerszy zakres działania, co nie jest zgodne z ich specyfikacją. Przykładowo, zbyt wysoki zakres zadziałania może sugerować, że wyłącznik będzie skutecznie chronił przed intensywnymi zwarciami, jednak w rzeczywistości jego zainstalowanie w takich zastosowaniach może prowadzić do uszkodzenia instalacji lub urządzeń elektrycznych, które powinny być chronione. Ponadto, wybór wyłącznika o niewłaściwej charakterystyce może prowadzić do pominięcia potrzebnej ochrony przeciwprzeciążeniowej w aplikacjach, w których wymagane są mniejsze wartości zadziałania. Zrozumienie zakresu zadziałania wyzwalaczy jest kluczowe dla prawidłowego doboru urządzeń zabezpieczających zgodnie z wymaganiami norm elektrotechnicznych, takich jak IEC 60898, które definiują zasady stosowania wyłączników nadprądowych w różnych typach instalacji elektrycznych.

Pytanie 23

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Kluczem płaskim
B. Nożem monterskim
C. Neonowym wskaźnikiem napięcia
D. Wkrętakiem
Wykorzystywanie klucza płaskiego do demontażu i montażu połączeń w puszce instalacyjnej nie jest właściwe, ponieważ klucz ten jest zaprojektowany głównie do pracy z nakrętkami i śrubami o określonym kształcie, a nie do śrub, które często znajdują się w instalacjach elektrycznych. Klucz płaski może nie być w stanie dostarczyć odpowiedniego momentu obrotowego czy precyzyjnego dopasowania, co może prowadzić do obluzowania połączeń lub ich uszkodzenia. Z kolei nóż monterski, choć może być użyteczny w cięciu przewodów czy izolacji, nie jest przeznaczony do pracy z połączeniami śrubowymi, przez co jego stosowanie w tym kontekście jest niewłaściwe i może prowadzić do poważnych błędów. Neonowy wskaźnik napięcia służy do sprawdzania obecności napięcia w instalacji, a nie do modyfikacji połączeń. Użycie tego narzędzia w kontekście montażu czy demontażu może prowadzić do mylnego przekonania, że urządzenie jest bezpieczne do użycia, co jest niebezpieczne. Dobrą praktyką jest korzystanie z odpowiednich narzędzi, na co wskazują normy branżowe oraz wytyczne dotyczące bezpieczeństwa w instalacjach elektrycznych. Umiejętność wyboru odpowiednich narzędzi jest kluczowa dla zapewnienia jakości i bezpieczeństwa pracy w branży elektrycznej.

Pytanie 24

W układzie zasilania jakiej lampy oświetleniowej wykorzystuje się tyrystorowy system zapłonowy?

A. Halogenowej
B. Sodowej
C. Rtęciowej
D. Żarowej
Tyrystorowy układ zapłonowy znajduje zastosowanie głównie w obwodach zasilania lamp sodowych, ze względu na ich specyfikę działania oraz wymagania dotyczące zapłonu. Lampy sodowe, znane z wysokiej efektywności świetlnej oraz długu czasu życia, potrzebują odpowiedniego układu, który umożliwia ich szybkie i stabilne zapłonienie. Tyrystory, jako elementy półprzewodnikowe, pozwalają na kontrolowanie dużych prądów oraz napięć, co jest niezbędne w przypadku lamp sodowych, które charakteryzują się dużymi wartościami prądów startowych. Dodatkowo, tyrystory umożliwiają oszczędność energii poprzez precyzyjne zarządzanie cyklem pracy lampy, co jest zgodne z najlepszymi praktykami w projektowaniu systemów oświetleniowych, które dążą do minimalizacji strat energii oraz wydłużenia żywotności źródeł światła. Warto również zauważyć, że tyrystory, jako elementy zabezpieczające i sterujące, są często wykorzystywane w różnych zastosowaniach przemysłowych, co podkreśla ich wszechstronność i znaczenie w nowoczesnych systemach oświetleniowych.

Pytanie 25

Która z podanych awarii urządzenia II klasy ochronności stanowi ryzyko porażenia prądem?

A. Uszkodzenie izolacji przewodu zasilającego urządzenie
B. Przerwanie uzwojeń silnika umieszczonego w urządzeniu
C. Zniszczenie przewodu ochronnego PE
D. Zwarcie bezpiecznika wewnętrznego urządzenia
Przepalenie bezpiecznika wewnątrz urządzenia oraz przerwa w uzwojeniach silnika, mimo że mogą prowadzić do problemów z działaniem urządzenia, nie stwarzają bezpośredniego zagrożenia porażenia prądem, ponieważ bezpiecznik jest elementem zabezpieczającym, który po wykryciu nadmiernego prądu automatycznie przerywa obwód. Z kolei przerwa w uzwojeniach silnika powoduje, że silnik przestaje działać, a nie występuje niebezpieczne napięcie na jego obudowie. Uszkodzenie przewodu ochronnego PE, chociaż stanowi istotny problem, w kontekście urządzenia II klasy ochronności nie powinno prowadzić do bezpośredniego zagrożenia, ponieważ urządzenia te są zaprojektowane tak, aby w przypadku awarii nie występowało niebezpieczne napięcie na obudowie. Kluczowym błędem myślowym jest niewłaściwe zrozumienie działania systemów ochrony. W urządzeniach II klasy ochronności, stosowanie podwójnej izolacji w celu zapobiegania porażeniom elektrycznym, sprawia, że nawet w przypadku uszkodzenia elementów wewnętrznych, nie powinno dojść do wystawienia na działanie niebezpiecznego napięcia. Zrozumienie zasad działania zabezpieczeń oraz klasyfikacji urządzeń elektrycznych jest kluczowe dla zapewnienia właściwego bezpieczeństwa w użytkowaniu sprzętu elektrycznego.

Pytanie 26

Kontrolując warunek automatycznego wyłączenia zasilania jako element ochrony przed porażeniem w systemach TN-S, realizowanego przez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia konieczne jest określenie dla zastosowanego wyłącznika

A. progu zadziałania wyzwalacza przeciążeniowego
B. czasu działania wyzwalacza zwarciowego
C. maksymalnej wielkości prądu zwarciowego
D. wartości prądu wyłączającego
Analizując inne dostępne odpowiedzi, dostrzegamy pewne nieprawidłowości w podejściu do tematu sprawdzania warunków samoczynnego wyłączenia zasilania. Maksymalna wartość prądu zwarciowego jest istotnym parametrem, lecz nie jest bezpośrednio związana z prawidłowym funkcjonowaniem wyłącznika w kontekście ochrony przeciwporażeniowej. O ile znajomość wartości zwarciowych jest przydatna w doborze wyłącznika, sama maksymalna wartość nie określa, czy dany wyłącznik zadziała w odpowiednim czasie. Próg zadziałania wyzwalacza przeciążeniowego również nie ma zastosowania w przypadku wyłącznika, którego główną funkcją jest ochrona przed zwarciem, a nie przeciążeniem. W kontekście warunków samoczynnego wyłączenia zasilania kluczowym parametrem pozostaje wartość prądu wyłączającego, który musi być niższy niż wartość prądu zwarciowego, aby zrealizować efektywne odcięcie zasilania. Ostatnia z propozycji, dotycząca czasu zadziałania wyzwalacza zwarciowego, również nie odnosi się bezpośrednio do wymaganego pomiaru. Choć czas reakcji wyzwalacza jest istotny dla bezpieczeństwa, to jednak w kontekście samoczynnego wyłączenia zasilania bardziej kluczowe jest przynajmniej zrozumienie i pomiar wartości prądu wyłączającego, aby zapewnić odpowiednią reakcję w przypadku awarii. Ignorowanie tych zasad i niezrozumienie funkcji poszczególnych parametrów może prowadzić do błędów w doborze urządzenia ochronnego oraz, co gorsza, do sytuacji narażających użytkowników na ryzyko porażenia elektrycznego.

Pytanie 27

Który zestaw narzędzi, oprócz przymiaru kreskowego i młotka należy wybrać do montażu instalacji natynkowej w rurach PCV?

Nóż monterski
Poziomnica
Wkrętarka
Obcinaczki
Wiertarka
Nóż monterski
Piłka do cięcia
Wkrętak
Obcinaczki
Wiertarka
Cęgi do izolacji
Poziomnica
Wkrętarka
Obcinaczki
Lutownica
Cęgi do izolacji
Poziomnica
Wkrętarka
Płaskoszczypcy
Wiertarka
A.B.C.D.
A. C.
B. B.
C. A.
D. D.
Wybór zestawu B jako odpowiedzi prawidłowej jest uzasadniony, ponieważ do montażu instalacji natynkowej w rurach PCV niezbędne są odpowiednie narzędzia do cięcia, łączenia i mocowania rur. Zestaw B zawiera piłkę do cięcia, która jest kluczowa do precyzyjnego przycinania rur PCV do wymaganej długości. Przykładowo, podczas instalacji rur konieczne jest dostosowanie ich długości do wymagań konkretnego projektu, a użycie odpowiedniej piły zapewnia czyste i równomierne krawędzie, co jest istotne dla prawidłowego montażu. Dodatkowo, zestaw ten zawiera wkrętak, który jest niezbędny do mocowania uchwytów lub innych elementów instalacji oraz obcinaczki, które są pomocne w precyzyjnym łączeniu elementów rur. W praktyce, stosując zestaw B, można zrealizować projekt zgodnie z najlepszymi praktykami w branży, które podkreślają znaczenie użycia odpowiednich narzędzi dla uzyskania trwałej i bezpiecznej instalacji. Warto również pamiętać o standardach dotyczących montażu instalacji elektrycznych, które wymagają odpowiednich narzędzi i technik, aby zapewnić bezpieczeństwo i efektywność działania systemu.

Pytanie 28

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242
A. 6,0 mm2
B. 1,5 mm2
C. 4,0 mm2
D. 2,5 mm2
Dobra robota z wybraniem przekroju przewodu 2,5 mm²! Z tego co pamiętam, taki przekrój jest ok, gdy chodzi o obciążalność prądową. Kiedy obliczamy prąd dla grzejnika elektrycznego 4,6 kW przy 230 V, to wychodzi nam około 20 A. Jak spojrzysz na tabelę obciążalności przewodów, to zobaczysz, że 2,5 mm² spokojnie wytrzyma do 24 A, co oznacza, że jest to bezpieczny wybór. Moim zdaniem, dobrze dobrany przekrój przewodu to klucz do efektywnej pracy urządzenia i bezpieczeństwa naszych instalacji. Taki przekrój jest także często używany w instalacjach oświetleniowych czy przy zasilaniu urządzeń o podobnych parametrach. Zawsze warto mieć na uwadze tabele obciążalności i normy, jak PN-IEC 60364 – to pomoże uniknąć problemów w przyszłości.

Pytanie 29

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q19 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NO + 2NO + 1NC
B. 3NC + 2NO + 1NC
C. 3NO + 1NO + 2NC
D. 3NC + 1NO + 2NC
Wybrana odpowiedź jest prawidłowa, ponieważ stycznik Q19 wymaga zastosowania trzech zestyków normalnie otwartych (3NO), jednego zestyków normalnie otwartego (1NO) oraz dwóch zestyków normalnie zamkniętych (2NC). W praktycznych zastosowaniach, takie zestawienie pozwala na skuteczne sterowanie obwodami, w których konieczne jest jednoczesne włączanie kilku urządzeń oraz realizacja funkcji zabezpieczających, takich jak odcięcie zasilania w przypadku awarii. W kontekście standardów branżowych, takie połączenie zestyków jest zgodne z normami IEC 60947, które definiują wymagania dla aparatów elektrycznych. Dobrą praktyką jest również regularne przeglądanie schematów układów oraz dobór odpowiednich elementów na podstawie ich charakterystyki oraz wymagań obciążeniowych. Dzięki starannej analizie schematu można uniknąć problemów związanych z niewłaściwym doborem zestyków, co jest kluczowe dla bezpieczeństwa i efektywności działania instalacji elektrycznych.

Pytanie 30

Na którym rysunku przedstawiono przewód który należy zastosować do wykonywania instalacji podtynkowej oświetlenia klatki schodowej?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Przewód z literą B super nadaje się do oświetlenia klatki schodowej, bo jest wielożyłowy. Dzięki temu można go podłączyć do różnych rzeczy, jak łączniki schodowe albo krzyżowe. W klatkach schodowych często trzeba sterować światłem z różnych miejsc, więc musimy mieć odpowiednie przewody. Ten wielożyłowy to fajna opcja, bo można podpiąć dodatkowe żyły, co daje nam większą elastyczność. I pamiętaj, że zgodnie z normą PN-IEC 60364, dobrze jest zaprojektować te instalacje tak, żeby zmniejszyć ryzyko zwarcia i mieć odpowiednie zabezpieczenia. Moim zdaniem, wybierając ten przewód B, ułatwiasz sobie życie, bo można łatwo dostosować oświetlenie w przyszłości, zmienić coś bez konieczności całkowitej wymiany systemu. Pamiętaj też, żeby zawsze sprawdzić specyfikacje techniczne oraz wymagania dotyczące zabezpieczeń elektrycznych w Twoim kraju.

Pytanie 31

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 4 mm2
B. 6 mm2
C. 1,5 mm2
D. 2,5 mm2
Wybór niewłaściwego przekroju żyły może wynikać z kilku błędnych założeń dotyczących obciążalności przewodów. Odpowiedzi takie jak 4 mm², 1,5 mm² lub 6 mm² mogą wydawać się atrakcyjne, ale każda z nich ma swoje mankamenty. W przypadku 4 mm², chociaż teoretycznie jest to wystarczający przekrój, to w praktyce jest to zbyt duża wartość w odniesieniu do obliczonego minimum, co prowadzi do zbędnych kosztów materiałowych. Z kolei przekrój 1,5 mm² jest niewystarczający, ponieważ jego maksymalna obciążalność nie osiąga wymaganego poziomu, co stwarza ryzyko przegrzewania się przewodów oraz potencjalnych awarii w przypadku przeciążenia. Odpowiedź 6 mm² zaś, choć jest zgodna z wytycznymi dotyczącymi bezpieczeństwa, również przekracza wymagania, co powoduje dodatkowe wydatki i nieefektywne wykorzystanie zasobów. Często błędne wnioski wynikają z nieznajomości norm obciążalności przewodów lub ignorowania praktycznych aspektów takich jak długotrwałe obciążenia czy warunki montażu. Ważne jest również, aby pamiętać, że odpowiedni dobór przekroju przewodów nie tylko wpływa na bezpieczeństwo instalacji, ale także na jej efektywność energetyczną oraz koszty eksploatacji. Działania w tej dziedzinie powinny być zawsze wspierane przez aktualne normy oraz praktyki branżowe, aby zapewnić niezawodność i bezpieczeństwo całego systemu zasilania.

Pytanie 32

Na którym rysunku przedstawiono przewód elektroenergetyczny stosowany do wykonywania napowietrznych przyłączy budynków mieszkalnych?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór innej odpowiedzi niż C może wynikać z nieporozumienia dotyczącego klasyfikacji przewodów elektroenergetycznych stosowanych w przyłączach budynków. Przewody napowietrzne, szczególnie te używane do budynków mieszkalnych, muszą spełniać konkretne wymagania techniczne, które obejmują ilość rdzeni oraz ich funkcje. W przypadku przewodów, które nie są czterordzeniowe, mogą występować braki w zapewnieniu odpowiedniego zasilania. Przykładowo, przewody dwu- lub trzyrdzeniowe mogą nie wystarczyć do prawidłowego działania instalacji, ponieważ nie zapewniają odpowiedniej ilości faz, co jest kluczowe w przypadku obiektów wymagających większej mocy. Często spotykane błędy myślowe to mylenie zastosowania przewodów w różnych kontekstach – na przykład przewody stosowane w instalacjach wewnętrznych mogą różnić się od tych zaprojektowanych do pracy na wolnym powietrzu. Niezrozumienie tych różnic prowadzi do wybierania niewłaściwych rozwiązań, co z kolei może skutkować awariami lub ograniczoną efektywnością energetyczną. Znajomość standardów, takich jak PN-EN 60502-1, oraz praktyczne zrozumienie zastosowań przewodów, są kluczowe dla prawidłowego funkcjonowania systemów elektroenergetycznych.

Pytanie 33

W instalacji elektrycznej, której schemat przedstawiono na rysunku, po wykonanym montażu włączono pierwszy klawisz łącznika i wszystkie żarówki się tylko żarzyły, natomiast po włączeniu drugiego klawisza, przy włączonym pierwszym, zaświeciły się cztery żarówki. W celu ustalenia przyczyny nieprawidłowego działania instalacji należy sprawdzić poprawność połączeń przewodów do zacisków

Ilustracja do pytania
A. gniazda wtyczkowego.
B. łącznika.
C. żyrandola.
D. puszki zasilającej.
Błędne podejście do analizy problemu może prowadzić do mylnych wniosków i nieefektywnego rozwiązania problemów w instalacji elektrycznej. Wskazanie na łącznik jako źródło problemu z pewnością jest nieprecyzyjne, ponieważ działanie łącznika powinno być zgodne z jego przeznaczeniem, a ewentualne usterki w tym obszarze zazwyczaj objawiają się innym rodzajem awarii, np. brakiem działania całej instalacji. Podobnie, puszka zasilająca czy gniazdo wtyczkowe pełnią kluczowe funkcje w instalacji, ale w omawianym przypadku, ich poprawność działania nie jest wystarczającym wyjaśnieniem. Oparcie się na tych elementach w kontekście problemu nieprawidłowego działania żarówek jest błędne, ponieważ nie uwzględnia specyfiki obwodu, który powinien być analizowany jako całość. Typowym błędem rozumowania jest przenoszenie odpowiedzialności na elementy, które w rzeczywistości nie mają wpływu na zaobserwowane zjawisko. Właściwa diagnoza problemu wymaga szczegółowego zrozumienia interakcji pomiędzy poszczególnymi komponentami instalacji, co w tym przypadku jednoznacznie wskazuje na żyrandol jako miejsce potencjalnych usterek, a nie na elementy zasilające czy łączące.

Pytanie 34

Aby zabezpieczyć silnik indukcyjny trójfazowy w układzie zasilania ze stycznikiem przed przeciążeniem, należy użyć przekaźnika termobimetalowego. Jaki typ przekaźnika powinien być zastosowany?

A. trójtorowy bez styku kontrolnego
B. jednotorowy ze stykiem kontrolnym
C. jednotorowy bez styku kontrolnego
D. trójtorowy ze stykiem kontrolnym
Przekaźnik termobimetalowy trójtorowy ze stykiem sterującym jest idealnym rozwiązaniem do zabezpieczania silników trójfazowych przed przeciążeniem. Dzięki zastosowaniu tego typu przekaźnika możemy monitorować prąd w trzech fazach jednocześnie, co pozwala na szybsze wykrycie nadmiernego obciążenia oraz wyłączenie silnika w przypadku wystąpienia awarii. W praktyce, takie rozwiązanie jest zgodne z normami ochrony silników, jak IEC 60947, które zalecają stosowanie przekaźników termicznych w celu zapewnienia bezpieczeństwa pracy urządzeń elektrycznych. Przykładowo, w przypadku silników o większej mocy lub w aplikacjach wymagających wysokiej niezawodności, takich jak przemysł ciężki, stosowanie trójtorowego przekaźnika termobimetalowego staje się standardem. Dodatkowo, styk sterujący umożliwia integrację z układami automatyki oraz systemami alarmowymi, co zwiększa efektywność i bezpieczeństwo operacji. W rezultacie, wybór przekaźnika trójtorowego ze stykiem sterującym jest nie tylko najlepszą praktyką, ale też wymogiem w wielu zastosowaniach przemysłowych.

Pytanie 35

Przeglądy instalacji elektrycznej w budynkach mieszkalnych powinny być przeprowadzane nie rzadziej niż co

A. 2 lata
B. 5 lat
C. 10 lat
D. 1 rok
Przeglądy mieszkaniowej instalacji elektrycznej należy wykonywać nie rzadziej niż co 5 lat, zgodnie z obowiązującymi normami i przepisami prawa, w tym z ustawą Prawo budowlane oraz normami PN-IEC 60364. Regularne przeglądy są kluczowe dla zapewnienia bezpieczeństwa użytkowania instalacji elektrycznych oraz zapobiegania pożarom i porażeniom prądem. W ramach takiego przeglądu oceniana jest nie tylko stan techniczny przewodów i osprzętu elektrycznego, ale także zgodność z aktualnymi przepisami. Przykład: jeśli w ciągu 5 lat nie zrealizujesz przeglądu, możesz być narażony na ryzyko awarii instalacji, co może prowadzić do poważnych konsekwencji. Dobrą praktyką jest dokumentowanie wykonanych przeglądów oraz przechowywanie protokołów w celu ułatwienia ewentualnych kontroli oraz zapewnienia, że instalacja jest w dobrym stanie przez cały okres jej użytkowania.

Pytanie 36

Jaka jest znamionowa sprawność silnika jednofazowego przy danych: PN = 3,7 kW (moc mechaniczna), UN = 230 V, IN = 21,4 A oraz cos φN = 0,95?

A. 0,71
B. 0,95
C. 0,79
D. 0,75
Znamionowa sprawność silnika jednofazowego obliczana jest na podstawie wzoru: η = P_N / (U_N * I_N * cos φ_N), gdzie P_N to moc mechaniczna, U_N to napięcie znamionowe, I_N to prąd znamionowy, a cos φ_N to współczynnik mocy. Podstawiając wartości: η = 3,7 kW / (230 V * 21,4 A * 0,95) ≈ 0,79. Zrozumienie sprawności silnika jest kluczowe dla efektywności energetycznej w zastosowaniach przemysłowych. Wysoka sprawność oznacza mniejsze straty energii, co przekłada się na niższe koszty eksploatacji oraz mniejszą emisję zanieczyszczeń. W praktyce, dobór silników o znamionowej sprawności powyżej 0,80 jest standardem w branży, co zgodne jest z normami IEC 60034-30, które promują silniki o wysokiej efektywności. Dlatego, przy wyborze silnika, warto zwrócić uwagę na jego sprawność, co przyczyni się do zrównoważonego rozwoju i oszczędności energetycznych w dłuższym okresie.

Pytanie 37

Do ochrony obwodu przed przeciążeniem oraz zwarciem wykorzystuje się wyłącznik

A. współpracujący z przekaźnikiem sygnalizacyjnym
B. wyposażony w aparat różnicowoprądowy
C. współpracujący z przekaźnikiem czasowym
D. współpracujący z bezpiecznikiem topikowym
Co do pozostałych odpowiedzi, to niestety nie pasują one do tego, jak powinny działać zabezpieczenia elektryczne. Wyłącznik z przekaźnikiem sygnalizacyjnym nie jest do ochrony przed przeciążeniem, bo on raczej wskazuje, co się dzieje w obwodzie, a nie zabezpiecza go. Takie przekaźniki informują o stanie urządzeń, ale nie przerywają obwodu, gdy coś pójdzie nie tak. Jeśli chodzi o przekaźnik czasowy, to on ma zupełnie inne zastosowanie, zajmuje się automatyzacją, a nie ochroną. W zasadzie, przekaźniki czasowe mogą włączać lub wyłączać obwody w określonym czasie, ale nie chronią ich przed przeciążeniem. A co do aparatu różnicowoprądowego, to też jest jakieś nieporozumienie, bo jego zadaniem jest wykrywanie różnicy prądów między przewodami fazowymi a neutralnym, co zapobiega porażeniu prądem, a nie przeciążeniom. Mimo że aparaty różnicowoprądowe są bardzo ważne dla bezpieczeństwa, to nie zastępują zabezpieczeń przed przeciążeniem. Ważne jest, żeby rozumieć te różnice, bo to klucz do sprawnego działania instalacji elektrycznych i ich ochrony przed awariami. Dlatego warto stosować odpowiednie zabezpieczenia zgodnie z ich przeznaczeniem.

Pytanie 38

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnik bistabilny.
B. Prostownik dwupołówkowy.
C. Ogranicznik przepięć.
D. Wyłącznik zmierzchowy.
Ogranicznik przepięć to kluczowe urządzenie stosowane w systemach elektrycznych, mające na celu ochronę przed skutkami przepięć, które mogą być spowodowane na przykład wyładowaniami atmosferycznymi lub nagłymi zmianami w sieci energetycznej. Urządzenie to charakteryzuje się specyficzną obudową, często oznaczoną standardami ochrony, takimi jak IEC 61643-11, co pozwala na jego identyfikację. Przykładem zastosowania ograniczników przepięć jest instalacja w obiektach przemysłowych, gdzie występuje duża ilość wrażliwych urządzeń elektronicznych. Dzięki zastosowaniu ograniczników, możliwe jest zminimalizowanie ryzyka uszkodzeń sprzętu oraz zapewnienie ciągłości działania systemów. Doświadczenia wskazują, że odpowiednio dobrany i zainstalowany ogranicznik przepięć może znacząco wydłużyć żywotność urządzeń elektrycznych oraz zmniejszyć koszty napraw i konserwacji. W każdej instalacji elektrycznej istotne jest przestrzeganie zasad doboru i montażu, aby maksymalizować skuteczność działania tych urządzeń. Warto również pamiętać, że regularne przeglądy i testy ograniczników przepięć są niezbędne do utrzymania ich w dobrym stanie operacyjnym.

Pytanie 39

Do czynności związanych z oględzinami instalacji elektrycznej nie należy

A. weryfikacja oznaczeń obwodów oraz zabezpieczeń
B. sprawdzenie prawidłowości oznaczeń przewodów neutralnych oraz ochronnych
C. pomiar rezystancji uziemienia
D. ocena dostępności urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
Pomiar rezystancji uziemienia jest kluczowym procesem, który ma na celu zapewnienie odpowiedniej ochrony przed skutkami piorunów i zakłóceń elektrycznych. Uziemienie jest istotnym elementem w instalacjach elektrycznych, który chroni urządzenia oraz osoby przed niebezpieczeństwami związanymi z przepięciami oraz zwarciami. Odpowiednia rezystancja uziemienia powinna być zgodna z normami, takimi jak PN-IEC 60364, które zalecają, aby wartość rezystancji uziemienia nie przekraczała 10 Ω dla urządzeń w warunkach normalnych. W praktyce, pomiar ten może być przeprowadzany przy użyciu specjalistycznych urządzeń, takich jak mierniki rezystancji uziemienia, które pozwalają na szybkie i dokładne określenie wartości rezystancji. Właściwe wykonanie tego pomiaru jest niezbędne do zapewnienia bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznej. Przykładowo, w budynkach użyteczności publicznej, takich jak szpitale czy szkoły, regularne pomiary rezystancji uziemienia są wymagane przynajmniej raz w roku w celu spełnienia norm bezpieczeństwa.

Pytanie 40

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SZR
B. SRN
C. SCO
D. SPZ
Odpowiedź SZR (System Zasilania Rezerwowego) jest prawidłowa, ponieważ ten układ jest zaprojektowany do automatycznego przełączania źródeł zasilania w przypadku zaniku zasilania z głównego źródła. Działa on na zasadzie monitorowania napięcia w sieci zasilającej; w momencie wykrycia spadku napięcia lub całkowitego braku zasilania, SZR automatycznie uruchamia rezerwowe źródło zasilania, co zapewnia ciągłość pracy ważnych odbiorników niskiego napięcia, takich jak systemy alarmowe, oświetlenie awaryjne czy urządzenia medyczne. Przykładowo, w szpitalach i centrach danych, gdzie nieprzerwane zasilanie jest kluczowe, SZR eliminuje ryzyko przestojów. Stosowanie SZR jest zgodne z normami PN-EN 50171 oraz PN-EN 62040, które określają wymagania dotyczące systemów zasilania awaryjnego oraz UPS. Dzięki temu, instalacje z SZR nie tylko zwiększają bezpieczeństwo, ale też poprawiają efektywność operacyjną, co jest niezbędne w obiektach o krytycznym znaczeniu.