Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 07:11
  • Data zakończenia: 17 grudnia 2025 07:14

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W jaki sposób i przewodem o jakim przekroju ma być wykonana trójfazowa wewnętrzna linia zasilająca (WLZ), której obciążalność prądowa wynosi 220 A?

Obciążalność prądowa długotrwała w A przewodów
o żyłach Cu w izolacji PVC ułożonych w różny sposób
Przekrój
znamionowy żył
w mm²
Instalacja wykonana
sposobami
CE
70211216
95225238
gdzie:
C – przewody układane po wierzchu, na ścianie lub suficie drewnianym
E – przewody wielożyłowe ułożone swobodnie w powietrzu lub korytku kablowym
A. Sposób C i 70 mm2
B. Sposób C i 95 mm2
C. Sposób E i 95 mm2
D. Sposób E i 70 mm2
W przypadku niepoprawnych odpowiedzi można zauważyć kilka kluczowych błędów logicznych, które mogą prowadzić do niewłaściwych wniosków. Na przykład, wybór metody C z przekrojem 95 mm², mimo że przekrój przewodu spełnia wymogi obciążalności, nie uwzględnia faktu, że sposób ułożenia ma zasadnicze znaczenie dla bezpieczeństwa i wydajności. Sposób C to układ przewodów w rurkach instalacyjnych, co ogranicza ich zdolność do odprowadzania ciepła. W rezultacie może to prowadzić do przegrzania i potencjalnych uszkodzeń instalacji. Również wybór sposobu E z mniejszym przekrojem 70 mm² jest nieadekwatny, ponieważ obciążalność tego przewodu wynosi jedynie 200 A, co nie wystarcza do obsługi wymaganej wartości 220 A. W takich przypadkach warto zwrócić uwagę na obliczenia dotyczące obciążalności prądowej przewodów, które są podstawą do projektowania prawidłowych instalacji elektrycznych. Niezastosowanie się do standardów, takich jak PN-IEC 60364, w kontekście doboru zarówno metody ułożenia, jak i przekroju przewodu, może prowadzić do awarii systemów zasilających oraz zagrożeń dla bezpieczeństwa użytkowników. Dlatego tak ważne jest, aby przed podjęciem decyzji o wyborze odpowiednich komponentów instalacji elektrycznej, dokładnie analizować wymagania oraz standardy branżowe.

Pytanie 2

Na którym rysunku przedstawiono przewód który należy zastosować do wykonywania instalacji podtynkowej oświetlenia klatki schodowej?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Nieodpowiedni wybór przewodu do instalacji oświetleniowej, jak w przypadku A, C czy D, może wiązać się z poważnymi problemami. Często te odpowiedzi wynikają z braku zrozumienia, jakie są wymagania do instalacji elektrycznych. Na przykład przewód jednożyłowy z odpowiedzi A nie sprawdzi się w układzie, gdzie potrzeba wielu punktów do sterowania. W klatkach schodowych, które wymagają przełączników, muszą być dodatkowe przewody, żeby wszystko działało jak należy. Przewód oznaczony jako C może być zbyt sztywny lub źle oznakowany, co utrudnia prawidłowe połączenie w systemie oświetleniowym. Takie błędy mogą prowadzić do zwarć, uszkodzeń sprzętu lub zagrożeń dla ludzi. Trzeba także mieć na uwadze zasady doboru przewodów według normy PN-IEC 60364, która mówi o odpowiednich przekrojach i liczbie żył. Co do przewodu z odpowiedzi D, możliwe, że nie spełnia norm odporności na wysokie temperatury czy wilgoć, co jest mega ważne w instalacjach podtynkowych. Dlatego warto dobrze przemyśleć wymagania techniczne przed wyborem przewodu.

Pytanie 3

Podczas przeprowadzania inspekcji instalacji elektrycznej w budynku mieszkalnym nie jest wymagane sprawdzanie

A. wartości rezystancji izolacji przewodów
B. stanu obudów wszystkich elementów instalacji
C. poprawności działania wyłącznika różnicowoprądowego
D. nastaw urządzeń zabezpieczających w instalacji
Wiesz, przy ocenie bezpieczeństwa instalacji elektrycznej często pojawiają się nieporozumienia co do tego, co trzeba sprawdzać. Więc jeśli myślisz, że stan obudów, wyłączniki różnicowoprądowe czy urządzenia zabezpieczające nie są ważne, to musisz to przemyśleć. Sprawdzanie stanu obudów jest mega istotne, żeby nie zdarzył się przypadkowy kontakt z prądem. Jak wyłączniki różnicowoprądowe nie działają, to może być niebezpiecznie. Regularne weryfikowanie ich działania to polecana praktyka. Do tego ustawienia urządzeń zabezpieczających też są kluczowe, bo jak są źle ustawione, to może to doprowadzić do problemów. Ignorowanie takich rzeczy jest ryzykowne, zresztą to może prowadzić do poważnych sytuacji, jak pożary czy porażenia. Każdy z tych elementów to część systemu ochrony, który ma na celu bezpieczne użytkowanie instalacji elektrycznej. Wiedza na ten temat to podstawa dla każdego, kto zajmuje się elektryką.

Pytanie 4

W instrukcji technicznej dotyczącej instalacji elektrycznej przewód uziemiający jest oznaczony symbolem literowym

A. FPE
B. CC
C. E
D. TE
Odpowiedź CC jest prawidłowa, ponieważ w dokumentacji technicznej instalacji elektrycznych przewód wyrównawczy rzeczywiście oznaczany jest symbolem literowym CC, co pochodzi od angielskiego terminu "Combined Conductor". Przewód wyrównawczy ma na celu zapewnienie ochrony przed porażeniem prądem elektrycznym poprzez wyrównanie potencjałów elektrycznych w instalacji. W praktyce oznacza to, że w przypadku wystąpienia uszkodzenia, prąd może być odprowadzany do ziemi, co minimalizuje ryzyko porażenia użytkowników sprzętu. Przewody te są szczególnie istotne w instalacjach przemysłowych oraz w obiektach użyteczności publicznej, gdzie istnieje duże ryzyko kontaktu z wodą lub innymi czynnikami mogącymi prowadzić do porażenia. Zgodnie z normami IEC 60364, każdy system elektryczny powinien być odpowiednio zabezpieczony, a przewody wyrównawcze odgrywają kluczową rolę w tych zabezpieczeniach, na przykład poprzez zastosowanie w instalacjach zasilających, gdzie wymagane jest zachowanie wysokiego poziomu bezpieczeństwa.

Pytanie 5

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225
A. 1 - sprawny, 2 - niesprawny.
B. 1 - niesprawny, 2 - sprawny.
C. Oba sprawne.
D. Oba niesprawne.
Stwierdzenie, że oba wyłączniki są niesprawne, jest niewłaściwe z kilku powodów. Przede wszystkim, analiza wyników pomiarów powinna opierać się na zrozumieniu zakresów prądów różnicowych, które są kluczowe dla oceny stanu technicznego wyłączników. W przypadku wyłączników EFI-2-25/003, prawidłowy zakres różnicowego prądu zadziałania wynosi od 0,5 do 1 IΔN. Użytkownicy często mylą pojęcia związane z parametrami technicznymi i mogą błędnie interpretować wartości pomiarów. Nieprawidłowe wnioski mogą się również wynikać z braku znajomości norm i standardów dotyczących testowania wyłączników różnicowoprądowych. Wiele osób zakłada, że wartości prądów, które są znacznie niższe od nominalnych, są sygnałem awarii, co jest mylące. Wyłączniki, które zadziałały przy odpowiednich wartościach, są w istocie sprawne i spełniają swoją funkcję ochronną. Kluczowe jest, aby użytkownicy mieli świadomość, że różnicowe prądy są tylko jednym z wielu parametrów, które należy brać pod uwagę przy ocenie stanu technicznego wyłączników. Wiedza na temat tego, jak prawidłowo interpretować wyniki pomiarów, jest niezbędna dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 6

Które parametry techniczne określają stycznik przedstawiony na rysunku?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Wybór niewłaściwej odpowiedzi może wynikać z kilku powszechnych nieporozumień dotyczących parametrów technicznych styczników. Niezrozumienie specyfikacji prądowych może prowadzić do błędnych wniosków o ich zastosowaniu. Na przykład, niektóre osoby mogą myśleć, że wyższy prąd znamionowy stycznika automatycznie przekłada się na jego lepszą jakość, co jest mylne. Ważne jest, aby zrozumieć, że dobór stycznika powinien uwzględniać zarówno prąd roboczy, jak i liczbę styków oraz ich konfigurację, co wpływa na funkcjonalność w danej aplikacji. Często błędem jest także ignorowanie liczby styków - styczniki z niewłaściwą liczbą styków mogą nie spełniać wymogów instalacji, co zagraża bezpieczeństwu. Dodatkowo, nieprzywiązanie wagi do norm przemysłowych, takich jak IEC 60947, może prowadzić do wyboru sprzętu, który nie jest zgodny z obowiązującymi standardami. W efekcie, błędna odpowiedź może wynikać z niekompletnej analizy danych lub pomylenia specyfikacji technicznych, co jest kluczowe dla prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 7

Jakiego rodzaju gniazda wtykowego należy użyć do zamontowania w puszce podtynkowej w łazience z instalacją typu TNS?

A. Jednego bez styku ochronnego
B. Jednego ze stykiem ochronnym
C. Podwójnego z stykiem ochronnym
D. Podwójnego bryzgoszczelnego ze stykiem ochronnym
Wybór gniazda pojedynczego bez styku ochronnego jest niewłaściwy, ponieważ jego stosowanie w łazience znacząco zwiększa ryzyko porażenia prądem. Normy dotyczące bezpieczeństwa elektrycznego jasno wskazują, że w pomieszczeniach o podwyższonej wilgotności konieczne jest zastosowanie gniazd ze stykiem ochronnym, co ma na celu minimalizację ryzyka. Pojedyncze gniazdo ze stykiem ochronnym, choć może wydawać się lepszym rozwiązaniem, również nie odpowiada wymaganiom strefy wysokiego ryzyka, jaką jest łazienka. Gniazda podwójne, nawet ze stykiem ochronnym, nie są wystarczające, jeżeli nie spełniają norm dotyczących ochrony przed wodą. Gniazda bryzgoszczelne są projektowane specjalnie z myślą o zabezpieczeniu przed wodą, co czyni je niezastąpionymi w takim środowisku. Stosowanie nieodpowiednich gniazd może prowadzić do niewłaściwego działania urządzeń elektrycznych i poważnych awarii oraz stanowić zagrożenie dla bezpieczeństwa użytkowników. W praktyce, kluczowe jest przestrzeganie norm i dobrych praktyk, co nie tylko chroni użytkowników, ale również zapewnia długotrwałą i bezpieczną eksploatację instalacji elektrycznej.

Pytanie 8

Miernik rezystancji włączony do układu jak na rysunku służy do

Ilustracja do pytania
A. sprawdzenia ciągłości przewodu głównego połączenia wyrównawczego.
B. sprawdzenia ciągłości przewodu miejscowego połączenia wyrównawczego.
C. pomiaru impedancji pętli zwarciowej.
D. pomiaru rezystancji uziemienia.
Wybór odpowiedzi niezgodnej z rzeczywistym przeznaczeniem miernika rezystancji może prowadzić do poważnych konsekwencji w pracy z instalacjami elektrycznymi. Pomiar impedancji pętli zwarciowej, choć istotny, dotyczy innego aspektu analizy instalacji elektrycznej. Impedancja pętli zwarciowej jest parametrem, który pozwala zrozumieć, jak instalacja zareaguje w przypadku zwarcia. Pomiar ten wykonuje się zwykle w celu oceny skuteczności zabezpieczeń, a nie do sprawdzenia ciągłości przewodów ochronnych. Także, pomiar rezystancji uziemienia, mimo że istotny dla zapewnienia ochrony przed porażeniem, odnosi się do innego elementu instalacji, a nie do samej ciągłości przewodu. Dodatkowo, sprawdzenie ciągłości przewodu miejscowego połączenia wyrównawczego także nie jest właściwe w kontekście użycia miernika w opisywanym układzie. Mierzony przewód w tym przypadku jest przewodem głównym, który odgrywa kluczową rolę w bezpiecznym funkcjonowaniu całej instalacji. Zrozumienie różnicy pomiędzy tymi rodzajami pomiarów jest kluczowe dla każdego specjalisty zajmującego się elektryką, ponieważ pomyłka w identyfikacji celu pomiaru może prowadzić do poważnych problemów z bezpieczeństwem instalacji, a także do nieprawidłowej oceny stanu technicznego systemu elektrycznego.

Pytanie 9

W jakiej z poniższych sytuacji poślizg silnika indukcyjnego będzie najmniejszy?

A. Podczas zasilania silnika jego wirnik będzie stał
B. Silnik będzie zasilany prądem w kierunku przeciwnym
C. Silnik będzie pracować na biegu jałowym
D. Silnik działa w nominalnych warunkach zasilania oraz obciążenia
Analizując pozostałe opcje, warto zauważyć, że zasilenie silnika przeciwprądem prowadzi do sytuacji, w której wirnik nie ma możliwości obrotów, co generuje maksymalny poślizg. W takim przypadku wirnik staje się właściwie statyczny, a energia nie jest efektywnie przetwarzana. Sytuacja ta nie tylko powoduje straty, ale również może prowadzić do uszkodzeń silnika. Z kolei, gdy wirnik silnika jest całkowicie nieruchomy, co ma miejsce w przypadku, gdy silnik jest zasilany bez obciążenia lub niesprawny, poślizg osiąga wartość maksymalną, ponieważ nie ma żadnego ruchu, co prowadzi do nieefektywnego wykorzystania energii. Praca silnika na biegu jałowym może sprawiać wrażenie podobnej do sytuacji z wirnikiem nieruchomym, jednakże w przypadku biegu jałowego wirnik wykonuje pewne obroty, co obniża poślizg. Wreszcie, praca silnika w znamionowych warunkach zasilania i obciążenia również nie zapewnia minimalnego poślizgu, ponieważ obciążenie wprowadza różnice prędkości wynikające z oporu mechanicznego oraz charakterystyki samego silnika. Ważne jest, aby zrozumieć, że optymalizacja pracy silników indukcyjnych, w tym zmniejszenie poślizgu, jest kluczowym elementem w kontekście efektywności energetycznej oraz długowieczności urządzeń.

Pytanie 10

Zdjęcie przedstawia przewód

Ilustracja do pytania
A. YDYp 3x1,5 750 V
B. YLY 3x1,5 500 V
C. YDYn 3x1,5 500 V
D. YDY 3x1,5 750 V
Wybór błędnie oznaczonego przewodu prowadzi do wielu nieporozumień, które mogą wynikać z niewłaściwej interpretacji symboliki używanej w oznaczeniach. Przewody typu YDY, które nie zawierają litery 'p', są przewodami okrągłymi, co jest istotnym aspektem w kontekście instalacji w różnych warunkach, na przykład w pomieszczeniach o ograniczonej przestrzeni. Zastosowanie przewodów okrągłych może być niewłaściwe tam, gdzie istnieją ograniczenia przestrzenne, co może prowadzić do problemów z instalacją. Z kolei przewód YDYn 3x1,5 500 V, oznaczony jako przewód z napięciem 500 V, jest niewłaściwy dla aplikacji wymagających wyższego napięcia, co oznacza, że jego zastosowanie w instalacjach o wyższych wymaganiach może prowadzić do zagrożeń związanych z przeciążeniem. Ponadto, przewód YLY 3x1,5 500 V, który sugeruje zastosowanie izolacji polietylenowej, jest błędnym wyborem, ponieważ polietylen ma inne właściwości niż poliwinit, w tym różnice w odporności na czynniki atmosferyczne oraz chemiczne. Zrozumienie tych różnic jest kluczowe, aby uniknąć problemów z trwałością i bezpieczeństwem instalacji elektrycznych. W praktyce, nieprawidłowy wybór przewodu może prowadzić do awarii instalacji, a nawet stanowić zagrożenie pożarowe. Dlatego ważne jest, aby w każdej sytuacji dobierać przewód zgodnie z wymaganiami technicznymi i normami branżowymi, co zapewni bezpieczeństwo i efektywność działania instalacji.

Pytanie 11

Na rysunku przedstawiono sposób podłączenia podtynkowego

Ilustracja do pytania
A. gniazda komputerowego.
B. łącznika świecznikowego.
C. gniazda antenowego.
D. łącznika grupowego.
W przypadku odpowiedzi wskazujących na inne elementy instalacji elektrycznej, takie jak gniazdo antenowe, łącznik grupowy czy łącznik świecznikowy, należy zauważyć, że każdy z tych komponentów ma zupełnie inną funkcję oraz zastosowanie. Gniazdo antenowe służy do podłączenia anteny telewizyjnej lub radiowej, co wiąże się z przesyłaniem sygnałów wideo lub audio, a nie z transmisją danych jak w przypadku gniazda komputerowego. Z kolei łącznik grupowy, stosowany zazwyczaj do sterowania różnymi obwodami oświetleniowymi, nie ma nic wspólnego z infrastrukturą sieciową, gdyż jego funkcja polega na włączaniu i wyłączaniu źródeł światła w określonych konfiguracjach. Łącznik świecznikowy działa na podobnej zasadzie, umożliwiając kontrolowanie pojedynczego źródła światła i nie może być mylony z gniazdem sieciowym. Błędne odpowiedzi często wynikają z nieporozumienia dotyczącego tych elementów i ich zastosowań. Kluczowe jest zrozumienie, że gniazda komputerowe są projektowane specjalnie do obsługi sygnałów sieciowych, co jest istotne w kontekście technologii informacyjnej i komunikacyjnej oraz w budowie nowoczesnych sieci LAN, gdzie wymagana jest odpowiednia jakość i prędkość transmisji danych.

Pytanie 12

Którą lampę przedstawiono na rysunku?

Ilustracja do pytania
A. Sodową.
B. Żarową.
C. Ledową.
D. Rtęciową.
Lampy żarowe, sodowe i rtęciowe różnią się zasadniczo od lamp LED pod względem konstrukcji i działania. Lampy żarowe działają na zasadzie podgrzewania włókna, co prowadzi do emisji światła, ale mają one ograniczoną efektywność energetyczną oraz krótszy czas życia. Ich głównym mankamentem jest również niska wydajność świetlna, co sprawia, że w porównaniu do LED-ów, wymagają one większej mocy do uzyskania tej samej jasności. Lampy sodowe, znane z charakterystycznego pomarańczowego światła, wykorzystują reakcje chemiczne gazu sodu, co czyni je bardziej efektywnymi od żarówek, lecz nadal nie dorównują lampom LED pod względem oszczędności energii i żywotności. Z kolei lampy rtęciowe, pomimo ich zastosowań w przemyśle i oświetleniu ulicznym, również ustępują miejsca technologiom LED, które oferują lepszą jakość światła oraz mniejsze zużycie energii. Często mylone są ze sobą ze względu na ich zastosowanie w podobnych kontekstach, ale różnice technologiczne są znaczące. Prawidłowe rozpoznanie lamp LED w kontekście innych typów oświetlenia jest kluczowe dla efektywnego zarządzania energią oraz zgodności z aktualnymi standardami ochrony środowiska.

Pytanie 13

Na której ilustracji przedstawiono przewód przeznaczony do wykonania trójfazowego przyłącza ziemnego do budynku jednorodzinnego w sieci TN-S?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 4.
C. Na ilustracji 3.
D. Na ilustracji 1.
Ilustracja 4 przedstawia przewód czterordzeniowy, co jest zgodne z wymaganiami dotyczącymi trójfazowego przyłącza ziemnego w systemie TN-S. W tym systemie mamy do czynienia z trzema przewodami fazowymi (L1, L2, L3), jednym przewodem neutralnym (N) oraz oddzielnym przewodem ochronnym (PE). Taki układ zapewnia odpowiednią separację przewodów, co jest niezbędne dla bezpieczeństwa i efektywności instalacji elektrycznej. Przewody czterordzeniowe są powszechnie stosowane w budynkach jednorodzinnych z przyłączami trójfazowymi, ponieważ pozwalają na równomierne obciążenie faz oraz minimalizują ryzyko przeciążenia. Zgodnie z normami europejskimi, instalacje elektryczne powinny być projektowane zgodnie z zasadami bezpieczeństwa, a wybór odpowiednich przewodów jest kluczowy. Przewód czterordzeniowy na ilustracji 4 jest idealnym rozwiązaniem, ponieważ zapewnia zarówno zasilanie dla urządzeń trójfazowych, jak i ochronę przed porażeniem elektrycznym, co jest zgodne z normą PN-EN 60204-1. W praktyce, użycie takiego przewodu umożliwia również elastyczność w rozbudowie instalacji o dodatkowe urządzenia lub obwody, co jest istotnym aspektem w nowoczesnym budownictwie.

Pytanie 14

Na schematach instalacji elektrycznych symbol z rysunku oznacza

Ilustracja do pytania
A. wyzwalanie elektroniczne.
B. cewkę przekaźnika z opóźnionym działaniem.
C. wyzwalanie cieplne.
D. cewkę przekaźnika z opóźnionym odpadaniem.
Wyzwalanie cieplne, przedstawione na schemacie, jest kluczowym elementem w kontekście zabezpieczeń elektrycznych, które ma na celu ochronę przed przeciążeniem. Zgodnie z normą PN-EN 60617, symbol ten odnosi się do mechanizmu, który działa na zasadzie rozszerzalności cieplnej materiałów. Przykładem zastosowania wyzwalania cieplnego są wyłączniki nadprądowe, które automatycznie odłączają obwód, gdy prąd przekracza określony próg przez zbyt długi czas. Dzięki temu zapobiegają uszkodzeniu urządzeń oraz minimalizują ryzyko pożaru. Oprócz wyłączników nadprądowych, wyzwalanie cieplne stosowane jest również w przekaźnikach termicznych, które mogą być używane w silnikach elektrycznych do monitorowania temperatury i zapobiegania przegrzaniu. Zrozumienie działania tego mechanizmu jest fundamentem dla inżynierów pracujących nad projektowaniem systemów zabezpieczeń elektrycznych, co podkreśla znaczenie znajomości symboliki występującej w dokumentacji technicznej.

Pytanie 15

Z jakiego rodzaju metalu oraz w jakiej formie produkowane są żyły przewodu YDYp 4×1,5 mm2?

A. Z miedzi w formie drutu
B. Z aluminium w formie linki
C. Z aluminium w formie drutu
D. Z miedzi w formie linki
Żyły w przewodzie YDYp 4×1,5 mm² są z miedzi, co jest standardem w branży elektrycznej. Miedź jest super, bo dobrze przewodzi prąd, dlatego właśnie się ją najczęściej wybiera do instalacji elektrycznych. W przypadku YDYp, jego druciana konstrukcja daje sporo elastyczności, co ułatwia robienie instalacji, zwłaszcza tam, gdzie jest ciasno. Te przewody można spotkać w budownictwie, szczególnie przy instalacjach oświetleniowych i systemach zasilających. Zgodnie z normą PN-EN 60228, miedziane przewody mają dokładnie określone parametry, co zapewnia bezpieczeństwo i efektywność. Na przykład, YDYp 4×1,5 mm² świetnie sprawdza się w oświetleniu w domach, gdzie trzeba mieć na uwadze zabezpieczenia przed przeciążeniem i zwarciem.

Pytanie 16

Która z podanych awarii urządzenia II klasy ochronności stanowi ryzyko porażenia prądem?

A. Przerwanie uzwojeń silnika umieszczonego w urządzeniu
B. Zniszczenie przewodu ochronnego PE
C. Uszkodzenie izolacji przewodu zasilającego urządzenie
D. Zwarcie bezpiecznika wewnętrznego urządzenia
Przepalenie bezpiecznika wewnątrz urządzenia oraz przerwa w uzwojeniach silnika, mimo że mogą prowadzić do problemów z działaniem urządzenia, nie stwarzają bezpośredniego zagrożenia porażenia prądem, ponieważ bezpiecznik jest elementem zabezpieczającym, który po wykryciu nadmiernego prądu automatycznie przerywa obwód. Z kolei przerwa w uzwojeniach silnika powoduje, że silnik przestaje działać, a nie występuje niebezpieczne napięcie na jego obudowie. Uszkodzenie przewodu ochronnego PE, chociaż stanowi istotny problem, w kontekście urządzenia II klasy ochronności nie powinno prowadzić do bezpośredniego zagrożenia, ponieważ urządzenia te są zaprojektowane tak, aby w przypadku awarii nie występowało niebezpieczne napięcie na obudowie. Kluczowym błędem myślowym jest niewłaściwe zrozumienie działania systemów ochrony. W urządzeniach II klasy ochronności, stosowanie podwójnej izolacji w celu zapobiegania porażeniom elektrycznym, sprawia, że nawet w przypadku uszkodzenia elementów wewnętrznych, nie powinno dojść do wystawienia na działanie niebezpiecznego napięcia. Zrozumienie zasad działania zabezpieczeń oraz klasyfikacji urządzeń elektrycznych jest kluczowe dla zapewnienia właściwego bezpieczeństwa w użytkowaniu sprzętu elektrycznego.

Pytanie 17

W strefie 0 przedstawionego na rysunku pomieszczenia z wanną można instalować

Ilustracja do pytania
A. oprawy oświetleniowe o II klasie ochronności.
B. przenośne odbiorniki o II klasie ochronności.
C. elektryczne podgrzewacze wody.
D. urządzenia zasilanie prądem zmiennym do 12 V.
W strefie 0 pomieszczenia z wanną można instalować jedynie urządzenia zasilane niskim napięciem, czyli prądem zmiennym do 12 V. Jest to zgodne z normami IEC 60364 oraz polskimi przepisami dotyczącymi ochrony przeciwporażeniowej. Niskie napięcie zapewnia znacznie wyższy poziom bezpieczeństwa w obszarach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacząco zwiększone. W praktyce oznacza to, że w strefie 0 można bezpiecznie stosować niektóre elementy oświetleniowe, takie jak lampy LED zasilane niskim napięciem, co umożliwia tworzenie atrakcyjnych aranżacji wnętrz. Przykładem mogą być podwodne reflektory montowane w wannach, które nie tylko poprawiają estetykę, lecz także zapewniają bezpieczeństwo użytkowników, minimalizując ryzyko wypadku. Instalacje w strefach mokrych powinny być projektowane przez wyspecjalizowanych elektryków, aby zapewnić zgodność z normami i bezpieczeństwo użytkowników.

Pytanie 18

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. zwarcie między przewodem neutralnym i ochronnym.
B. dotyk bezpośredni przewodu pod napięciem.
C. pojawienie się napięcia na części metalowej normalnie nie przewodzącej.
D. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
Błędne odpowiedzi na to pytanie dotyczą różnych aspektów funkcjonowania wyłączników różnicowoprądowych oraz nieprawidłowych połączeń w instalacjach elektrycznych. Zwarcie między przewodem neutralnym a ochronnym może prowadzić do niebezpiecznych sytuacji, jednak nie jest to przyczyna zadziałania wyłącznika różnicowoprądowego. Wyłączniki te są zaprojektowane w taki sposób, aby wykrywać różnice w prądzie przepływającym przez przewody. W przypadku zwarcia, prąd może nadal płynąć, co niekoniecznie spowoduje zadziałanie wyłącznika. Dotyk bezpośredni przewodu pod napięciem również nie jest odpowiednią odpowiedzią, ponieważ zadziałanie wyłącznika nie jest bezpośrednio związane z kontaktem z przewodem. Poza tym, pojawienie się napięcia na części metalowej, która normalnie nie przewodzi, również nie jest właściwą odpowiedzią, gdyż nie odnosi się to do mechanizmu działania wyłącznika różnicowoprądowego. W rzeczywistości, kluczowe znaczenie ma prawidłowe podłączenie przewodów w instalacjach elektrycznych, aby uniknąć sytuacji zagrażających zdrowiu i życiu, a także uszkodzeniom sprzętu. Typowe błędy myślowe związane z tymi odpowiedziami to mylenie zagrożeń związanych z zwarciem i zadziałaniem wyłącznika, co prowadzi do niewłaściwych wniosków o przyczynach zadziałania urządzenia zabezpieczającego.

Pytanie 19

Jaką liczbę klawiszy oraz zacisków ma typowy pojedynczy łącznik schodowy?

A. Jeden klawisz i cztery zaciski
B. Dwa klawisze i cztery zaciski
C. Jeden klawisz i trzy zaciski
D. Dwa klawisze i trzy zaciski
Wybór odpowiedzi z dwiema klawiszami jest błędny, ponieważ klasyczny pojedynczy łącznik schodowy z definicji nie może posiadać więcej niż jednego klawisza. Dwa klawisze są charakterystyczne dla łączników podwójnych, które umożliwiają kontrolę dwóch niezależnych obwodów oświetleniowych z jednego miejsca. Takie zamieszanie często wynika z niezrozumienia różnic między różnymi typami łączników. W przypadku łączników schodowych, ich podstawowa rola polega na umożliwieniu włączania i wyłączania światła z dwóch różnych miejsc, co jest realizowane przez połączenie dwóch łączników schodowych w układzie krzyżowym. Jeśli chodzi o zaciski, odpowiedzi sugerujące cztery zaciski lub niepoprawną liczbę trzech zacisków są mylące. Często błędne zrozumienie liczby zacisków wynika z pomylenia łączników schodowych z innymi typami łączników, takimi jak łączniki krzyżowe, które rzeczywiście mogą mieć więcej zacisków. Kluczem do zrozumienia funkcji łączników jest znajomość ich budowy oraz zasad działania w kontekście całego obwodu elektrycznego, co pozwala na ich właściwe wykorzystanie w praktyce.

Pytanie 20

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. uszkodzenia podłączonego urządzenia elektrycznego
B. zagrożenia porażeniem prądem elektrycznym
C. zwarcia w obwodzie elektrycznym
D. przeciążenia obwodu elektrycznego
Wielu ludzi myśli, że zamontowanie gniazda bez styku ochronnego może prowadzić do zwarcia w instalacji elektrycznej, co jest błędnym rozumowaniem. Zwarcie występuje, gdy następuje niezamierzony kontakt między przewodami o różnym potencjale, co prowadzi do nadmiernego przepływu prądu. W przypadku gniazda bez styku ochronnego nie dochodzi do sytuacji zwarcia, ale raczej do braku bezpiecznego uziemienia dla urządzenia. Kolejnym mylnym przekonaniem jest to, że brak styku ochronnego może prowadzić do przeciążenia instalacji elektrycznej. Przeciążenie ma miejsce, gdy zbyt wiele urządzeń pobiera prąd jednocześnie, co nie jest bezpośrednio związane z uziemieniem. Również uszkodzenie urządzenia elektrycznego nie jest bezpośrednim skutkiem braku styku ochronnego. Uszkodzenia mogą powstać w wyniku innych czynników, takich jak zbyt wysokie napięcie czy awaria wewnętrzna. W rzeczywistości, najważniejszym zagrożeniem wynikającym z zastosowania gniazda bez styku ochronnego jest możliwość porażenia prądem elektrycznym, co jest powszechnie bagatelizowane. Wynika to z braku zrozumienia zasad działania urządzeń elektrycznych i standardów bezpieczeństwa, takich jak PN-IEC 60439, które podkreślają znaczenie odpowiedniej ochrony w instalacjach elektrycznych. Edukacja na temat właściwego użytkowania i ochrony w instalacjach elektrycznych jest kluczowa dla zapewnienia bezpieczeństwa użytkowników.

Pytanie 21

Jaki przewód na schemacie montażowym instalacji elektrycznej oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Uziemiający.
B. Wyrównawczy.
C. Ochronny.
D. Neutralny.
Niepoprawne odpowiedzi mogą wynikać z błędnych skojarzeń dotyczących funkcji i oznaczeń przewodów w instalacjach elektrycznych. Odpowiedź "Uziemiający" może być mylnie wybrana przez osoby, które nie rozróżniają pomiędzy funkcjami przewodów. Uziemiający przewód rzeczywiście ma na celu odprowadzenie prądu do ziemi, jednak jego oznaczenie jest inne i nie jest to samo co przewód ochronny PE. Warto zaznaczyć, że przewód neutralny, oznaczany często jako N, służy do prowadzenia prądu powracającego do źródła, a jego rola jest zupełnie inna – nie ma on funkcji ochronnej. Wybór odpowiedzi "Wyrównawczy" również może wprowadzać w błąd, gdyż przewody wyrównawcze mają na celu wyrównanie potencjałów w różnych częściach instalacji, co nie odpowiada funkcji przewodu ochronnego, który ma chronić przed porażeniem. Typowe błędy myślowe obejmują mylenie funkcji przewodów oraz brak znajomości standardów dotyczących oznaczeń. Dlatego ważne jest, aby dokładnie zapoznać się z normami branżowymi i edukować się w zakresie oznaczeń, co przyczyni się do lepszego zrozumienia instalacji elektrycznych oraz zwiększy bezpieczeństwo ich użytkowania.

Pytanie 22

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SCO
B. SRN
C. SPZ
D. SZR
Wybór innych układów, takich jak SRN (System Rozdziału Napięcia), SPZ (System Powiadamiania Zasilania) czy SCO (System Command Output), jest niewłaściwy, ponieważ nie spełniają one wymagań dotyczących automatycznego przełączania źródeł zasilania. SRN koncentruje się na rozdzielaniu napięcia pomiędzy różne obwody i nie jest przeznaczony do monitorowania źródeł zasilania. Nie zapewnia automatyzacji ani rezerwowego zasilania, co jest kluczowe w kontekście zapewnienia ciągłości działania. Z kolei SPZ jest systemem, który głównie informuje o stanie zasilania, ale nie podejmuje działań w celu przełączenia źródła zasilania. Ostatni z wymienionych, SCO, jest systemem komunikacyjnym, który nie ma zastosowania w kontekście zarządzania zasilaniem. Użytkownicy mogą mylić te układy z SZR, sądząc, że ich funkcje obejmują automatyczne zarządzanie zasilaniem. W praktyce, nieprawidłowe zrozumienie funkcji tych systemów może prowadzić do ryzykownych sytuacji w obiektach wymagających stabilnego zasilania. Kluczowe jest, aby przy wyborze odpowiedniego układu kierować się jego specyfiką i przeznaczeniem, a także stosować się do dobrych praktyk oraz standardów branżowych, aby zapewnić niezawodność i bezpieczeństwo w instalacjach elektrycznych.

Pytanie 23

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. DYt
B. XzTKMXpw
C. LgY
D. YADY
Wybór innych typów przewodów, takich jak LgY, DYt czy XzTKMXpw, jest wynikiem niepełnego zrozumienia materiałów izolacyjnych i ich właściwości. Przewód LgY wyposażony jest zazwyczaj w powłokę z tworzywa sztucznego, ale nie jest to polwinit, co ogranicza jego zastosowanie w środowisku narażonym na działanie wysokich temperatur oraz agresywnych substancji chemicznych. Z kolei przewody DYt, które są stosowane w aplikacjach sygnalizacyjnych, również nie mają powłoki z polwinitu, co czyni je mniej odpowiednimi do zastosowań, gdzie wymagana jest duża odporność na czynniki zewnętrzne. Przewód XzTKMXpw jest natomiast typem, który może być używany w specyficznych warunkach, ale brak dokładnych informacji o jego zastosowaniach oraz materiałach izolacyjnych sprawia, że nie można go uznać za praktyczny wybór w kontekście powłoki z polwinitu. Wybór niewłaściwego typu przewodu wynika często z braku wiedzy na temat standardów branżowych oraz właściwych praktyk dotyczących instalacji elektrycznych, co może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa i efektywności energetycznej. Właściwy dobór przewodów jest kluczowy dla zapewnienia nieprzerwanego działania systemów elektrycznych oraz ochrony przed potencjalnymi awariami.

Pytanie 24

Na którym rysunku przedstawiono schemat montażowy?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Rysunek C został poprawnie zidentyfikowany jako schemat montażowy, ponieważ spełnia kluczowe kryteria związane z przedstawianiem układów elektrycznych. Schemat montażowy jest niezbędnym narzędziem w projektowaniu i wykonawstwie instalacji elektrycznych, umożliwiającym zrozumienie, jak poszczególne elementy urządzeń są połączone i rozmieszczone. W kontekście praktycznym, schemat montażowy dostarcza informacji na temat lokalizacji i sposobu montażu urządzeń, co jest kluczowe dla prawidłowego działania i bezpieczeństwa instalacji. Zawiera on także szczegóły odnośnie do przewodów, co ułatwia identyfikację i unikanie potencjalnych błędów podczas instalacji. Przykładem zastosowania schematów montażowych może być instalacja rozdzielnicy elektrycznej w budynku mieszkalnym, gdzie poprawne odwzorowanie połączeń elektrycznych gwarantuje nie tylko efektywność, ale i bezpieczeństwo użytkowników. Ponadto, zgodność z normami takimi jak PN-IEC 60364, która definiuje wymagania dotyczące instalacji elektrycznych, podkreśla znaczenie dokładności i czytelności schematów montażowych w praktyce inżynieryjnej.

Pytanie 25

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
B. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
C. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
D. Wiertarkę, punktak, zestaw wkrętaków
Wybór narzędzi zaproponowany w innych odpowiedziach, takich jak tylko taśma miernicza i młotek, bądź jedynie wiertarka i komplet wkrętaków, jest niewłaściwy dla tego konkretnego zadania. Taśma miernicza, mimo że jest przydatna do pomiarów, nie zastępuje potrzeby precyzyjnego wyznaczenia miejsc wiercenia, co może prowadzić do błędów w montażu. Młotek sam w sobie nie jest wystarczający do pracy z cegłą pełną, gdzie konieczne jest użycie punktaka do wstępnego oznaczenia otworów. Wiertarka bez odpowiedniego wiertła widiowego może nie sprostać twardości cegły, co skutkuje trudnościami w procesie wiercenia oraz możliwym uszkodzeniem narzędzia. Piła do metalu może być używana, lecz w kontekście montażu rurek PVC, kluczowe jest posiadanie narzędzi do obróbki i mocowania, a nie tylko cięcia. Ostatecznie, brak poziomnicy w zestawie narzędzi jest istotnym błędem, ponieważ precyzyjne wypoziomowanie rurek jest kluczowe dla prawidłowego funkcjonowania instalacji. Takie nieprzemyślane podejście do przygotowania narzędzi może prowadzić do poważnych błędów w instalacji, co w dłuższym czasie może generować dodatkowe koszty związane z poprawkami i ponownym montażem.

Pytanie 26

Który element stosowany w instalacjach mieszkaniowych przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnik bistabilny.
B. Przekaźnik priorytetowy.
C. Regulator oświetlenia.
D. Regulator temperatury.
Ten przekaźnik bistabilny, który widzisz na rysunku, to naprawdę przydatne urządzenie w elektryce. Ma super fajną funkcję – potrafi zapamiętać, jaki miał stan nawet po odłączeniu zasilania. To oznaczenie 'BIS-403' i ten schemat wyraźnie pokazują, że działa na zasadzie przełączania między dwoma stanami, które mogą sobie być niezależnie od prądu. Takie przekaźniki są często używane w automatyce budynkowej, na przykład przy oświetleniu, które powinno działać, nawet jak prąd jest wyłączony. To jest naprawdę dobre rozwiązanie, bo zmniejsza zużycie energii – nie potrzebują ciągłego prądu, żeby pamiętać swój stan. A to, moim zdaniem, jest ważne w kontekście ekologii i oszczędności energii. Warto o tym wiedzieć, planując nowe instalacje.

Pytanie 27

Na której ilustracji przedstawiono symbol graficzny przewodu neutralnego?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 1.
C. Na ilustracji 4.
D. Na ilustracji 3.
Rozpoznawanie symboli graficznych w instalacjach elektrycznych jest zadaniem wymagającym precyzyjnej wiedzy, która nie ogranicza się jedynie do identyfikacji poszczególnych oznaczeń. W kontekście przedstawionych ilustracji, częsty błąd polega na myleniu symboli neutralnego przewodu z innymi oznaczeniami. Każda ilustracja, która nie przedstawia linii z kropką na końcu, może być mylnie interpretowana jako symbol przewodu neutralnego. Na przykład, symbole graficzne wykorzystywane do oznaczenia przewodu fazowego czy ochronnego mają swoją specyfikę, a ich zrozumienie jest kluczowe dla poprawności wykonania instalacji. Uczestnicy mogą również wpaść w pułapkę skojarzeń z innymi standardami, co prowadzi do błędnych decyzji. Ważne jest, aby zrozumieć, że każdy przewód w instalacji pełni określoną rolę, a znajomość tych ról oraz ich graficznych reprezentacji jest fundamentalna. Nieprawidłowe podejście do oznaczeń może prowadzić do poważnych problemów w instalacji elektrycznej, takich jak zwarcia czy nieprawidłowe funkcjonowanie podłączonych urządzeń. W praktyce, zrozumienie konieczności prawidłowego oznaczania przewodów nie tylko wspiera bezpieczeństwo, ale także przyczynia się do efektywności systemów elektrycznych. W związku z tym, warto investować czas w naukę i doskonalenie umiejętności rozpoznawania poszczególnych symboli w zgodzie z obowiązującymi normami.

Pytanie 28

Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu

Ilustracja do pytania
A. TN-C-S
B. IT
C. TN-S
D. TT
Odpowiedź 'IT' jest prawidłowa, ponieważ rysunek ilustruje charakterystyczny sposób instalacji urządzenia ochronnego różnicowoprądowego w sieci typu IT. W systemie IT punkty neutralne źródła zasilania są izolowane od ziemi, co minimalizuje ryzyko zwarć i zwiększa bezpieczeństwo użytkowników. Zastosowanie impedancji o dużej wartości w połączeniu z punktem neutralnym pozwala na ograniczenie prądów upływowych do poziomu, który nie stwarza zagrożenia, a jednocześnie umożliwia wykrycie uszkodzeń izolacji. W praktyce, aby zapewnić ciągłość zasilania, w systemach IT częstym elementem jest urządzenie do kontrolowania stanu izolacji, co pozwala na szybką detekcję potencjalnych usterek. Dzięki tej architekturze, w przypadku uszkodzenia jednego z przewodów, drugi pozostaje na stałym poziomie napięcia względem ziemi, co zapobiega poważnym awariom. Takie rozwiązanie jest często stosowane w przemyśle oraz w obiektach wymagających wysokiego poziomu niezawodności zasilania, takich jak szpitale czy centra danych.

Pytanie 29

Jaki błąd został popełniony podczas pomiaru rezystancji izolacji instalacji elektrycznej, której schemat przedstawiono na rysunku?

Ilustracja do pytania
A. Zabezpieczenie główne powinno być zamknięte.
B. Zabezpieczenie silnika powinno być otwarte.
C. Przewód ochronny powinien być odłączony.
D. Wyłącznik główny powinien być zamknięty.
Pomiar rezystancji izolacji to mega ważny proces, który ocenia stan izolacji w instalacjach elektrycznych. Jak się nie uważa na zabezpieczenia i wyłączniki, to można narobić błędów. Jeśli główne zabezpieczenie czy zabezpieczenie silnika są zamknięte podczas pomiaru, to mogą dodać jakieś dodatkowe rezystancje, co zafałszuje wyniki. Główny wyłącznik powinien być otwarty, żeby mieć pełny dostęp do obwodów, a przewody ochronne odłączone, bo one też mogą coś namieszać. Ważne jest też to, żeby przed pomiarem wszystko było odłączone od prądu, żeby uniknąć niebezpieczeństw związanych z porażeniem prądem. W branży przyjęte są zasady, że przed każdym pomiarem trzeba sprawdzić stan instalacji i upewnić się, że wszystko jest zgodne z normami. Dlatego tak istotne jest, żeby wiedzieć, jak te pomiary robić i jakie są ich procedury, żeby uzyskać wiarygodne wyniki.

Pytanie 30

Który z poniższych jest podstawowym elementem ochrony przeciwporażeniowej w instalacjach elektrycznych?

A. Wyłącznik różnicowoprądowy
B. Przekaźnik czasowy
C. Bezpiecznik topikowy
D. Wyłącznik nadprądowy
Przekaźnik czasowy, chociaż użyteczny w wielu aplikacjach, nie pełni roli ochrony przeciwporażeniowej. Jest on zazwyczaj stosowany do automatyzacji procesów, takich jak opóźnianie włączania lub wyłączania urządzeń. Nie posiada funkcji wykrywania prądów upływowych ani nie chroni przed porażeniem prądem. Bezpiecznik topikowy natomiast zabezpiecza obwody przed przeciążeniem i zwarciami, ale jego działanie polega na przerwaniu obwodu, gdy natężenie prądu przekroczy określoną wartość. Nie wykrywa jednak niskich prądów upływowych, które mogą być niebezpieczne dla ludzi. Jakikolwiek prąd poniżej wartości znamionowej bezpiecznika może wciąż prowadzić do porażenia. Wyłącznik nadprądowy pełni funkcję podobną do bezpiecznika topikowego, chroniąc instalację przed przeciążeniem i zwarciami, ale nie jest zaprojektowany do wykrywania prądów upływowych, które są kluczowe w kontekście ochrony przeciwporażeniowej. Z tego powodu, chociaż każdy z tych elementów ma swoje miejsce w systemie zabezpieczeń elektrycznych, żaden z nich nie oferuje ochrony przed porażeniem prądem w taki sposób, jak robi to wyłącznik różnicowoprądowy. Właściwe zrozumienie ich funkcji pozwala na skuteczne projektowanie bezpiecznych instalacji elektrycznych.

Pytanie 31

Który typ źródła światła przedstawiono na rysunku?

Ilustracja do pytania
A. Rtęciowe.
B. Halogenowe.
C. Wolframowe.
D. Diodowe.
Wybór jednego z pozostałych typów źródła światła, takich jak wolframowe, rtęciowe czy halogenowe, jest wynikiem nieporozumienia dotyczącego charakterystyki i konstrukcji żarówek. Źródła wolframowe, na przykład, działają na zasadzie podgrzewania włókna wolframowego, co prowadzi do emisji światła, ale ich efektywność energetyczna jest znacznie niższa niż w przypadku diod LED. Oprócz tego, żarówki te mają krótszą żywotność, wynoszącą średnio tylko około 1 000 godzin. Odpowiedzi oparte na żarówkach rtęciowych również są mylne, ponieważ choć te źródła światła charakteryzują się wysoką sprawnością, ich użycie jest ograniczone ze względu na obecność szkodliwej rtęci, co stawia je w niekorzystnej pozycji w kontekście ochrony środowiska. Wreszcie, żarówki halogenowe, będące wariantem żarówek wolframowych, oferują lepszą wydajność, ale wciąż nie dorównują LED-om pod względem efektywności i trwałości. Często myślenie o tych tradycyjnych źródłach światła jako bardziej znajomych i sprawdzonych powoduje, że użytkownicy mogą nie dostrzegać korzyści płynących z nowoczesnych rozwiązań, jakimi są diody LED. Zrozumienie różnic między tymi technologiami jest kluczowe dla dokonania świadomego wyboru, który nie tylko wpłynie na oszczędności, ale także na jakość oświetlenia w codziennym życiu.

Pytanie 32

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. brak podłączenia dwóch faz
B. brak podłączenia jednej fazy
C. zamiana jednej fazy z przewodem neutralnym
D. zamiana dwóch faz miejscami
Analizując pozostałe odpowiedzi, można zauważyć, że brak podłączenia dwóch faz nie jest przyczyną zmiany kierunku obrotów silnika, lecz prowadzi do jego nieprawidłowego działania lub całkowitego braku pracy. Silnik trójfazowy wymaga wszystkich trzech faz do uzyskania pełnej mocy i momentu obrotowego. Brak jednej fazy spowoduje, że silnik nie będzie pracował w optymalnych warunkach, a jego działanie może być niestabilne. Z kolei zamiana jednej fazy z przewodem neutralnym nie prowadzi do zmiany kierunku obrotów, lecz może spowodować uszkodzenie silnika lub innych elementów instalacji. Często zdarza się, że osoby zajmujące się instalacjami elektrycznymi nie uwzględniają specyfikacji dotyczących konfiguracji połączeń fazowych, co może prowadzić do nieprawidłowego działania całego systemu. W praktyce, przy każdej zmianie instalacji, należy przeprowadzić dokładną kontrolę schematów połączeń oraz zapewnić zgodność z normami branżowymi, takimi jak PN-EN 60204-1, które regulują bezpieczeństwo maszyn i ich zasilania. Bez znajomości zasad działania silników trójfazowych oraz konsekwencji błędnych podłączeń, istnieje ryzyko nie tylko uszkodzenia sprzętu, ale także zagrożenie dla bezpieczeństwa użytkowników.

Pytanie 33

Który osprzęt przedstawiono na zdjęciu?

Ilustracja do pytania
A. Złączki skrętne.
B. Mufy przelotowe.
C. Kapturki termokurczliwe.
D. Dławnice.
Dławnice kablowe to naprawdę ważne elementy w instalacjach elektrycznych. Jak widać na zdjęciu, mają za zadanie chronić miejsce, gdzie przewód wchodzi do obudowy urządzenia. Dzięki nim przewody są mniej narażone na różne uszkodzenia mechaniczne czy na wpływ wilgoci i brudu. Wiele razy spotykam się z tym, że w trudnych warunkach, jak na przykład w przemyśle, bez dławnic byłoby ciężko zapewnić bezpieczeństwo. Dławnice są często wykorzystywane w silnikach elektrycznych i skrzynkach przyłączeniowych, żeby wszystko dobrze uszczelniało się i działało jak należy. Dobrze też wiedzieć, że są zgodne z normami IEC 62262 oraz IEC 60529, które mówią, jak powinno wyglądać zabezpieczenie przed ciałami obcymi i wilgocią. Także odpowiedni dobór tych elementów ma ogromne znaczenie, bo źle dobrana dławnica może nie spełniać swojego zadania. Warto o tym pamiętać, bo brak dławnic w kluczowych miejscach w instalacji może prowadzić do sporych problemów, a więc zawsze lepiej stosować je tam, gdzie to konieczne.

Pytanie 34

Który rodzaj źródła światła pokazano na rysunku?

Ilustracja do pytania
A. Żarowe.
B. Wyładowcze.
C. Elektroluminescencyjne.
D. Fluorescencyjne.
Poprawna odpowiedź to "Elektroluminescencyjne", ponieważ na ilustracji mamy do czynienia z diodą LED (Light Emitting Diode), która jest typowym przykładem tego rodzaju źródła światła. Diody LED charakteryzują się wysoką efektywnością energetyczną oraz długą żywotnością, co sprawia, że są coraz częściej stosowane w nowoczesnych systemach oświetleniowych. W przeciwieństwie do żarówek, które emitują światło w wyniku podgrzewania włókna, diody LED wykorzystują zjawisko elektroluminescencji, gdzie światło jest emitowane przez rekombinację nośników ładunku w półprzewodniku. Dzięki tej technologii, diody LED mogą osiągać znacznie większą efektywność w przetwarzaniu energii elektrycznej na światło, co przekłada się na oszczędności w zużyciu energii oraz mniejsze koszty eksploatacji. Zastosowania diod LED są niezwykle różnorodne – od oświetlenia ulicznego, przez oświetlenie wnętrz, aż po wyświetlacze i sygnalizację świetlną, co czyni je jednym z najważniejszych rozwiązań w nowoczesnej technologii oświetleniowej.

Pytanie 35

Posługując się tabelą dobierz wyłącznik nadmiarowo-prądowy o największym prądzie znamionowym, który może zabezpieczać obwód jednofazowy, wykonany przewodami o przekroju 1,5 mm2, ułożonymi w sposób B2.

Tabela: Obciążalność długotrwała I, [A] przewodów miedzianych o izolacji polwinitowej przy obliczeniowej temperaturze 25oC
UłożenieA1A2B1B2CE
Liczba jednocześnie obciążonych żył232323232323
Przekrój mm2Dopuszczalna obciążalność długotrwała, A
1,515,514,515,51418,516,517,5162118,52319,5
2,5211918,519,52522242129253227
4282527243430322928344236
A. B16
B. B20
C. C6
D. B6
Wybór nieprawidłowego wyłącznika nadmiarowo-prądowego może prowadzić do poważnych konsekwencji dla bezpieczeństwa instalacji elektrycznej. W przypadku odpowiedzi C6, sugerującej wyłącznik o prądzie znamionowym 6 A, jest to zdecydowanie zbyt mała wartość, biorąc pod uwagę, że obciążalność długotrwała przewodu o przekroju 1,5 mm² w ułożeniu B2 wynosi 16,5 A. Taki wybór może prowadzić do częstych wyłączeń, co staje się uciążliwe dla użytkowników i może być oznaką nieprawidłowego doboru zabezpieczeń. Z kolei wyłącznik B20, mający prąd znamionowy 20 A, przekracza dopuszczalną obciążalność przewodów, co naraża je na ryzyko przegrzania i uszkodzenia. Zastosowanie takiego wyłącznika w obwodzie może w dłuższym okresie prowadzić do poważnych zagrożeń, w tym pożaru. Warto także zauważyć, że wyłącznik B6 również nie jest odpowiedni, gdyż jego nominalny prąd jest zbyt niski, co skutkuje brakiem właściwej ochrony w przypadku obciążeń typowych dla instalacji domowej. Wybór odpowiedniego wyłącznika wymaga zrozumienia obciążenia obwodu oraz zastosowania właściwych norm, takich jak PN-IEC 60898-1, które jasno określają, jak dobierać wyłączniki w zależności od przewodów oraz ich zastosowania. Niezrozumienie tych zasad może prowadzić do poważnych błędów w instalacji, wpływających na bezpieczeństwo użytkowników.

Pytanie 36

Który aparat przedstawiony jest na rysunku?

Ilustracja do pytania
A. Ogranicznik przepięć.
B. Rozłącznik izolacyjny.
C. Selektywny wyłącznik nadprądowy.
D. Wyłącznik nadmiarowo-prądowy.
Wyłącznik nadmiarowo-prądowy jest niezwykle ważnym elementem w ochronie instalacji elektrycznych. Jego głównym zadaniem jest automatyczne przerywanie obwodu w momencie, gdy natężenie prądu przekroczy ustalony bezpieczny poziom. Dzięki temu urządzeniu możliwe jest zabezpieczenie przed skutkami przeciążeń, które mogą prowadzić do uszkodzeń instalacji lub pożarów. W praktyce wyłączniki nadmiarowo-prądowe są wykorzystywane w różnorodnych aplikacjach, zarówno w domowych instalacjach elektrycznych, jak i w przemysłowych systemach zasilania. Kluczowe jest, aby dobierać odpowiednie urządzenia zgodnie z normami EN 60898, które definiują wymagania dotyczące wyłączników nadprądowych. Dobre praktyki wskazują na regularne testowanie tych urządzeń, co pozwala na upewnienie się, że działają one zgodnie z oczekiwaniami i są w stanie skutecznie chronić instalację przed przeciążeniami i zwarciami.

Pytanie 37

W instalacji elektrycznej, której schemat przedstawiono na rysunku błędnie podłączono

Ilustracja do pytania
A. żyrandol.
B. przewody zasilające.
C. łącznik.
D. przewód ochronny.
Wybór żyrandola, przewodów zasilających lub przewodu ochronnego jako błędnie podłączonych elementów w instalacji elektrycznej nie jest uzasadniony z technicznego punktu widzenia. Żyrandol, będący źródłem światła, powinien być podłączony zgodnie z instrukcjami producenta i normami bezpieczeństwa, które zalecają podłączenie go do obwodu elektrycznego poprzez odpowiednie złącza. Niepoprawne jest postrzeganie żyrandola jako elementu, który może być źródłem poważnych problemów w instalacji, jeżeli zostanie właściwie zamontowany i użytkowany. Przewody zasilające, jako kluczowy element każdej instalacji, nie powinny być uznawane za źródło błędów, o ile są zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące ich instalacji oraz ochrony. Przewód ochronny natomiast ma na celu zabezpieczenie przed porażeniem prądem i jego poprawne podłączenie jest kluczowe dla bezpieczeństwa instalacji. Typowe błędy myślowe, które mogą prowadzić do nieprawidłowych wniosków, obejmują nieznajomość podstawowych zasad instalacji elektrycznych oraz nieuwzględnianie zasadności ich działania w codziennym użytkowaniu. Zrozumienie funkcji i zastosowania każdego z tych elementów instalacji elektrycznej jest niezbędne dla zapewnienia ich prawidłowego działania oraz bezpieczeństwa użytkowników.

Pytanie 38

Narzędzie z rysunku służy do

Ilustracja do pytania
A. zaciskania końcówek tulejkowych.
B. profilowania przewodów.
C. ściągania izolacji.
D. tworzenia oczek na przewodzie.
Wybór niewłaściwej odpowiedzi wskazuje na nieporozumienie związane z funkcjonalnością narzędzi elektrycznych. Profilowanie przewodów nie jest zadaniem, które wykonuje ściągacz izolacji; to proces, który ma na celu nadanie przewodom określonego kształtu lub wymiaru, co nie jest związane z usuwaniem izolacji. Narzędzie to nie jest również przeznaczone do tworzenia oczek na przewodzie, co jest techniką wykorzystywaną w przypadku, gdy wymagane jest połączenie przewodów w sposób zapewniający ich stabilność. Zaciskanie końcówek tulejkowych także wymaga zastosowania innych narzędzi, takich jak zaciskarki, które są projektowane do formowania końcówek przewodów w celu zapewnienia solidnego połączenia. Kluczowym błędem w rozumieniu funkcji narzędzi elektrycznych jest mylenie różnych operacji, które mogą być wykonywane na przewodach. Niezrozumienie tego, co każde narzędzie robi oraz do jakich zastosowań jest przeznaczone, może prowadzić do nieefektywnego wykonywania prac oraz potencjalnie niebezpiecznych sytuacji. Dlatego tak ważne jest, aby przed przystąpieniem do pracy z narzędziami elektrycznymi, dobrze znać ich przeznaczenie i funkcje.

Pytanie 39

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. prawidłowe działanie wyłącznika
B. niemożność załączenia wyłącznika pod obciążeniem
C. brak możliwości zadziałania załączonego wyłącznika
D. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
Pomyłkowe podłączenie przewodu PE (ochronnego) zamiast N (neutralnego) na wejściu i wyjściu wyłącznika różnicowoprądowego rzeczywiście skutkuje niemożnością załączenia urządzenia pod obciążeniem. Wyłączniki różnicowoprądowe są zaprojektowane tak, aby wykrywać różnice prądów między przewodem fazowym a neutralnym. Jeśli przewód PE zostanie użyty zamiast N, to nie będzie możliwe prawidłowe pomiarowanie tych różnic, co uniemożliwi zadziałanie mechanizmu wyłączającego. Z punktu widzenia praktycznego, w takich przypadkach, użytkownik nie będzie mógł korzystać z instalacji, co podkreśla krytyczną rolę poprawnego podłączenia przewodów w systemach elektrycznych. W ramach dobrych praktyk, zawsze należy stosować oznaczenia przewodów zgodne z normami, aby zminimalizować ryzyko takich pomyłek. W Polsce stosuje się normy PN-IEC 60446 dotyczące oznaczania przewodów, które pomagają w poprawnym podłączeniu instalacji elektrycznej.

Pytanie 40

Ile wynosi wartość impedancji pętli zwarcia wyznaczonej w układzie pomiarowym przedstawionym na rysunku, jeśli przy otwartym wyłączniku W woltomierz wskazywał napięcie 228 V, a przy zamkniętym wyłączniku W woltomierz wskazywał 218 V, a amperomierz wskazał prąd 4 A?

Ilustracja do pytania
A. 1,25 Ω
B. 1,50 Ω
C. 2,50 Ω
D. 2,75 Ω
Problemy związane z błędnymi odpowiedziami najczęściej wynikają z nieprawidłowego zrozumienia zasad działania obwodów elektrycznych oraz błędnych obliczeń związanych z prawem Ohma. Użytkownicy mogą mylić jednostki miary lub źle interpretować różnice napięć w obwodzie. Na przykład, jeśli ktoś obliczał impedancję, wykorzystując różne wartości napięcia bez uwzględnienia spadku napięcia, mógłby uzyskać błędne wyniki, takie jak 1,50 Ω czy 1,25 Ω. Takie odpowiedzi mogą wynikać z przeoczenia, że do obliczeń należy używać jedynie różnicy napięcia przy zamkniętym i otwartym wyłączniku, a nie pojedynczych pomiarów. Z kolei wybór 2,75 Ω jako wartości impedancji może oznaczać, że osoba ta nie zrozumiała, jak funkcjonują obwody prądu przemiennego lub nie doceniła wpływu prądu na pomiar. Błędy te mogą również wynikać z braku znajomości praktycznych zastosowań i norm dotyczących instalacji elektrycznych, takich jak PN-IEC 60364. Właściwe obliczenia i zrozumienie wpływu impedancji pętli zwarcia na bezpieczeństwo instalacji elektrycznych są kluczowe dla każdego inżyniera elektryka. Ignorując te zasady, można stworzyć potencjalnie niebezpieczne warunki w obwodach elektrycznych, dlatego dokładność obliczeń i znajomość podstawowej teorii jest niezbędna w tej dziedzinie.