Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 20 grudnia 2025 19:03
  • Data zakończenia: 20 grudnia 2025 19:27

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na rysunku przedstawiono fragment ściany zewnętrznej z oblicówką konstrukcyjną. Wykonanie takiej ściany polega na wymurowaniu

Ilustracja do pytania
A. ze szczeliną powietrzną pomiędzy warstwą wewnętrzną a zewnętrzną.
B. obu warstw jednocześnie na całej wysokości.
C. warstwy zewnętrznej, a po jej stwardnieniu, domurowaniu warstwy wewnętrznej.
D. najpierw warstwy wewnętrznej, a po jej stwardnieniu, wykonaniu okładziny zewnętrznej.
Wykonanie ściany zewnętrznej z oblicówką konstrukcyjną poprzez wymurowanie obu warstw jednocześnie na całej wysokości jest zgodne z najlepszymi praktykami budowlanymi, które zapewniają stabilność oraz efektywność termiczną ścian. Tego rodzaju konstrukcje, dzięki jednoczesnemu murowaniu, minimalizują ryzyko powstawania szczelin, które mogą prowadzić do utraty izolacyjności termicznej oraz akustycznej. W praktyce, taka technologia pozwala również na uzyskanie spójności materiałowej oraz eliminację problemów z różnicami w osiadaniu warstw, co jest istotne w przypadku zmieniającego się obciążenia środowiskowego. Stosowanie jednoczesnego murowania warstw wpływa pozytywnie na jakość wykonania, a także na czas budowy, co jest istotnym aspektem w praktyce budowlanej. W kontekście norm budowlanych, wykonanie ściany w ten sposób wpisuje się w standardy dotyczące izolacji termicznej oraz nośności konstrukcji, co ma kluczowe znaczenie dla trwałości budowli.

Pytanie 2

Którego z narzędzi należy użyć do murowania ścian w systemie Ytong?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Murowanie ścian w systemie Ytong wymaga zastosowania odpowiednich narzędzi, które są kluczowe dla osiągnięcia zamierzonych efektów. Często zdarza się, że osoby próbujące dobudować ściany z bloczków Ytong sięgają po narzędzia, które nie są dostosowane do tego typu materiałów. Na przykład, stosowanie młotka metalowego czy innych twardych narzędzi może prowadzić do uszkodzenia bloczków, co wpływa na ich stabilność oraz wygląd. Gumowy młotek, ze względu na swoje właściwości amortyzujące, pozwala na precyzyjne i delikatne uderzenia, co jest niezbędne w przypadku materiałów o cienkich ściankach. Użycie niewłaściwych narzędzi może nie tylko prowadzić do pęknięć, ale również sprawić, że murowanie będzie czasochłonne i nieefektywne. Przykładowo, niewłaściwe ustawienie czy zniekształcenie bloczków może powodować nieprawidłowe spoinowanie, co z kolei wpływa na trwałość całej konstrukcji. Zrozumienie zasadności stosowania odpowiedniego narzędzia jest fundamentalne w procesie budowlanym i powinno być podstawą dla każdego profesjonalisty w branży.

Pytanie 3

W efekcie "klawiszowania" stropu na tynku sufitu w pomieszczeniu utworzyła się rysa. Usunięcie tego defektu polega w szczególności na

A. pokryciu rysy pasem siatki z włókna szklanego
B. zaszpachlowaniu rysy zaprawą gipsową
C. zaszpachlowaniu rysy zaprawą cementową
D. pokryciu rysy pasem papy asfaltowej
Zaszpachlowanie rysy zaprawą gipsową jest podejściem, które, mimo że może wydawać się logiczne, w rzeczywistości nie jest wystarczające w przypadku poważniejszych uszkodzeń, takich jak rysy wynikające z klawiszowania stropu. Zaprawa gipsowa, chociaż dobrze przylega do powierzchni i daje estetyczne wykończenie, nie jest materiałem elastycznym. W efekcie, w miejscach, gdzie występują mikro ruchy, gips może pękać, co prowadzi do konieczności powtarzania napraw. Używanie papy asfaltowej jako rozwiązania również jest nieadekwatne, ponieważ papa nie jest przeznaczona do użytku w pomieszczeniach i nie posiada właściwości wytrzymałościowych wymaganych do naprawy tynku. Zastosowanie zaprawy cementowej w tym kontekście również nie jest optymalne, gdyż cement, podobnie jak gips, nie rozwiązuje problemu związania materiału z ruchem konstrukcyjnym, a jego sztywność może pogłębiać problem. Te błędne podejścia wskazują na niezrozumienie dynamiki uszkodzeń budowlanych oraz braku znajomości materiałów, które powinny być stosowane w celu zapewnienia długotrwałej i efektywnej naprawy. Kluczowe jest, aby przy naprawach uwzględniać nie tylko estetykę, ale przede wszystkim trwałość i odporność na zmiany zachodzące w strukturze budynku.

Pytanie 4

Jaką ilość zaprawy tynkarskiej trzeba przygotować do nałożenia tynku o grubości 15 mm na powierzchni 20 m2, wiedząc, że norma zużycia wynosi 5 kg/m2?

A. 30 kg
B. 100 kg
C. 15 kg
D. 50 kg
Aby obliczyć ilość zaprawy tynkarskiej potrzebnej do wykonania tynku o grubości 15 mm na powierzchni 20 m2, należy zastosować normę zużycia, która wynosi 5 kg/m2. Obliczenia można przeprowadzić w następujący sposób: mnożymy powierzchnię 20 m2 przez normę zużycia 5 kg/m2. To daje nam 20 m2 * 5 kg/m2 = 100 kg. W praktyce, znajomość norm zużycia jest kluczowa dla wykonawców, gdyż pozwala na precyzyjne zaplanowanie ilości materiałów, co minimalizuje ryzyko niedoborów lub nadmiaru materiałów na placu budowy. Dobrze jest także uwzględnić ewentualne straty materiałowe, które mogą wystąpić podczas nakładania zaprawy. Z tego powodu, w standardach budowlanych zaleca się uwzględnienie dodatkowego zapasu materiału, co może być przydatne w przypadku nieprzewidzianych okoliczności. Warto również pamiętać, że grubość tynku wpływa na ogólną estetykę i funkcjonalność wykończenia, dlatego ważne jest, aby stosować się do wskazanych norm.

Pytanie 5

Rysunek przedstawia umowne i uproszczone oznaczenie klatki schodowej w rzucie i dotyczy kondygnacji

Ilustracja do pytania
A. powtarzalnej
B. najniższej
C. wyrównawczej
D. najwyższej
Odpowiedź "najniższej" jest trafna, bo rysunek pokazuje, że klatka schodowa prowadzi w dół, czyli mowa o kondygnacji, która jest poniżej poziomu, z którego schody zaczynają. W praktyce, oznaczanie klatek schodowych jest mega ważne w projektowaniu budynków, bo pomaga ogarnąć, jak wygląda układ przestrzenny i jak poruszać się w obiekcie. Zgodnie z przepisami budowlanymi, klatki schodowe muszą być odpowiednio oznakowane, żeby zapewnić bezpieczeństwo ludziom, szczególnie w sytuacjach kryzysowych. Znakowanie najniższej kondygnacji może też dotyczyć projektów, gdzie piwnice albo inne przestrzenie pod ziemią są częścią budynku. Takie dobre praktyki w architekturze wymagają, żeby wszystko było jasne i zrozumiałe, co w tym przypadku odnosi się do tego, że schody prowadzą do najniższej kondygnacji, co jest kluczowe dla orientacji w budynku. Takie oznaczenia pomagają nie tylko użytkownikom, ale też służbom ratunkowym w nagłych wypadkach, co pokazuje, jak ważne są w tym kontekście.

Pytanie 6

Zaprawa murarska powstaje z połączenia wody, dodatków lub domieszek oraz spoiwa

A. organicznym i kruszywa grubego
B. organicznym i kruszywa drobnego
C. nieorganicznym i kruszywa grubego
D. nieorganicznego i kruszywa drobnego
Zrozumienie, z czego składa się zaprawa murarska, to naprawdę ważna sprawa, jeśli chcemy, żeby nasze konstrukcje były trwałe. Często ludzie się mylą i nie rozumieją, jak dobierać materiały. Jeśli ktoś myśli, że w zaprawie mogą być spoiwa organiczne, to się myli, bo w tradycyjnych zaprawach używa się spoiw nieorganicznych, a to one właściwie zapewniają wytrzymałość i odporność na różne czynniki zewnętrzne. Pamiętaj, że kruszywo drobne, a nie grube, jest kluczowe dla dobrej konsystencji zaprawy. Jak użyjesz kruszywa grubego, to może się okazać, że w strukturze będą ubytki, co jest kiepskie dla trwałości. Nieodpowiedni skład zaprawy to też szansa na osłabienie całej konstrukcji, co wynika z braku zrozumienia, jak działają te składniki. Standardy budowlane są jasno określone, więc lepiej stosować się do nich, żeby nie mieć problemów później.

Pytanie 7

Na podstawie danych zawartych w tabeli, określ dopuszczalną odchyłkę od pionu muru spoinowanego, mierzoną na całej wysokości ściany budynku dwukondygnacyjnego.

Tabela. Dopuszczalne odchyłki wymiarów murów (fragment)
Rodzaj odchyłekDopuszczalne odchyłki [mm]
mury spoinowanemury niespoinowane
Zwichrowania i skrzywienia
− na 1 m długości
− na całej powierzchni
3
10
6
20
Odchylenia od pionu
− na wysokości 1 m
− na wysokości kondygnacji
− na całej wysokości ściany
3
6
20
6
10
30
A. 6 mm
B. 20 mm
C. 10 mm
D. 12 mm
Odpowiedź 20 mm to strzał w dziesiątkę! Zgodna jest z normami budowlanymi dotyczącymi murów spoinowanych. To odchylenie od pionu ma ogromne znaczenie dla stabilności konstrukcji, zwłaszcza w przypadku budynków piętrowych. Wysokość ścian i różne obciążenia mogą wpływać na ich wytrzymałość. W praktyce, ważne jest, żeby odchylenie nie przekraczało ustalonej wartości, bo mogą się pojawić problemy jak pęknięcia czy osuwiska. Mierzymy to podczas budowy, używając poziomicy albo teodolitu, żeby wszystko było w porządku. Dzięki temu trzymamy wysoki standard i minimalizujemy ryzyko awarii. Choć na pierwszy rzut oka mniejsze odchylenia, jak 6 mm czy 10 mm, mogą wydawać się w porządku, to jednak te 20 mm to bezpieczna granica, która naprawdę pozwala zadbać o jakość budynku. Dlatego dobrze znać te normy, bo są super ważne w naszej branży.

Pytanie 8

Na rysunku przedstawiono szczegół oparcia stropu gęstożebrowego na ścianie zewnętrznej z betonu komórkowego. Całkowita wysokość tego stropu wynosi

Ilustracja do pytania
A. 300 mm
B. 250 mm
C. 190 mm
D. 220 mm
Odpowiedź 220 mm jest prawidłowa, ponieważ wysokość stropu gęstożebrowego zaznaczona na rysunku wynosi dokładnie 220 mm. Wysokość ta odnosi się do całkowitego wymiaru stropu, który jest istotny w projektowaniu konstrukcji budowlanych. W praktyce, właściwa wysokość stropu gęstożebrowego ma kluczowe znaczenie dla nośności oraz efektywności energetycznej budynku. Stropy gęstożebrowe, wykonane z materiałów takich jak beton komórkowy, są popularnym rozwiązaniem w budownictwie, ponieważ łączą w sobie lekkość oraz wysoką wytrzymałość. Normy budowlane, takie jak PN-EN 1992, precyzują minimalne i maksymalne wysokości stropów, co wpływa na ich projektowanie i zastosowanie w różnych typach budynków. W sytuacjach, gdy strop ma być stosowany jako element wykończeniowy, wysokość ta jest również istotna z perspektywy estetyki oraz funkcjonalności przestrzeni.

Pytanie 9

Jeśli koszty robocizny na demontaż lm2 ceglanej ścianki działowej wynoszą 0,61 r-g, to ile czasu zajmie rozebranie 5 takich ścianek, z których każda ma powierzchnię 10 m2?

A. 30,5 r-g
B. 61,0 r-g
C. 81,9 r-g
D. 30,0 r-g
Odpowiedź 30,5 r-g jest poprawna, ponieważ aby obliczyć czas potrzebny do rozebrania pięciu ścianek o powierzchni 10 m2 każda, należy najpierw określić całkowitą powierzchnię do rozebrania. Całkowita powierzchnia wynosi 5 ścianek x 10 m2 = 50 m2. Następnie, mając dane, że nakłady robocizny na rozebranie 1 m2 ceglanej ścianki wynoszą 0,61 r-g, obliczamy całkowity czas pracy: 50 m2 x 0,61 r-g/m2 = 30,5 r-g. Praktyczne zastosowanie tej wiedzy jest kluczowe w branży budowlanej, gdzie precyzyjne planowanie robocizny pozwala na optymalizację kosztów i czasu realizacji projektów. Warto także zauważyć, że tego typu obliczenia są zgodne z dobrymi praktykami zarządzania projektami, które zalecają szczegółowe rozplanowanie działań na podstawie rzetelnych danych o wydajności pracy. Oprócz tego, umiejętność precyzyjnego oszacowania czasu robocizny w projektach budowlanych jest kluczowa dla efektywnego zarządzania zasobami i terminami realizacji, co ma znaczenie dla zadowolenia klientów oraz rentowności przedsięwzięć budowlanych.

Pytanie 10

Na podstawie danych zawartych w tabeli oblicz całkowity koszt materiałów potrzebnych do wykonania 1 m2 tynku mozaikowego.

Rodzaj materiałuPojemność opakowaniaCena za
1 opakowanie
Wydajność
zaprawa tynkarska25 kg150,00 zł3 kg/m²
preparat gruntujący4 l30,00 zł0,4 l/m²
A. 9,00 zł
B. 18,00 zł
C. 6,00 zł
D. 21,00 zł
Poprawna odpowiedź to 21,00 zł, co jest wynikiem dokładnego obliczenia kosztów materiałów potrzebnych do wykonania 1 m² tynku mozaikowego. W tym przypadku istotne jest, aby zrozumieć, że koszt zaprawy tynkarskiej wynosi 18,00 zł/m², a koszt preparatu gruntującego to dodatkowe 3,00 zł/m². Suma tych dwóch wartości daje całkowity koszt 21,00 zł/m². Jest to ważne, aby znać te wartości, ponieważ pozwala to na precyzyjne planowanie budżetu na prace tynkarskie w projektach budowlanych. W praktyce, przy kalkulacji kosztów dla większych powierzchni, takie jednostkowe koszty mogą być mnożone przez powierzchnię całkowitą, co następnie pozwala na oszacowanie całkowitych wydatków. Przykładowo, przy tynkowaniu ściany o powierzchni 50 m², całkowity koszt materiałów wyniesie 1050,00 zł. Takie podejście jest zgodne z najlepszymi praktykami w budownictwie, które zalecają staranne obliczanie kosztów na każdą część projektu, aby uniknąć nieprzewidzianych wydatków oraz opóźnień w realizacji.

Pytanie 11

Jakie wiązanie cegieł w murze przedstawiono na rysunku?

Ilustracja do pytania
A. Główkowe.
B. Kowadełkowe.
C. Krzyżykowe.
D. Wozówkowe.
Odpowiedź 'wozówkowe' jest prawidłowa, ponieważ układ cegieł na przedstawionym rysunku odzwierciedla charakterystykę tego typu wiązania. W wiązaniu wozówkowym cegły są układane naprzemiennie: jedna cegła jest osadzona na swoim krótszym boku (wąsko), a kolejna na swoim dłuższym boku (szeroko). Takie ułożenie pozwala na lepsze rozłożenie obciążenia, co zwiększa stabilność i trwałość budowli. W praktyce, wiązanie wozówkowe jest często stosowane w budownictwie ścian zarówno murowanych, jak i w konstrukcjach z cegły, ponieważ zapewnia odpowiednią więź i zmniejsza ryzyko pękania. Warto również zauważyć, że wiązanie to jest zgodne z zasadami sztuki budowlanej, które zalecają stosowanie różnych rodzajów układów cegieł w celu uzyskania optymalnej wytrzymałości strukturalnej. Ponadto, wiązanie wozówkowe jest estetyczne i często stosowane w budynkach o tradycyjnym charakterze, co czyni go uniwersalnym rozwiązaniem w architekturze.

Pytanie 12

Na ilustracji przedstawiono fragment stropu

Ilustracja do pytania
A. Akermana.
B. Teriva.
C. Kleina.
D. Fert.
Strop Kleina stanowi jedno z bardziej klasycznych rozwiązań w budownictwie, które zyskało popularność dzięki swojej solidności oraz prostocie konstrukcyjnej. W jego budowie wykorzystuje się stalowe belki, co pozwala na znaczne zmniejszenie ciężaru całej konstrukcji, a jednocześnie zapewnia wysoką nośność. Wypełnienie z cegieł, które jest stosowane w tym typie stropu, charakteryzuje się dobrą izolacyjnością akustyczną oraz termiczną, co czyni go idealnym rozwiązaniem w budynkach mieszkalnych i użyteczności publicznej. Strop Kleina jest również zgodny z normami budowlanymi, co czyni go bezpiecznym i trwałym rozwiązaniem. Z punktu widzenia inżynierii, ważnym aspektem jest możliwość dostosowania tego typu stropu do różnych warunków oraz obciążeń, co czyni go elastycznym rozwiązaniem w projektowaniu budynków. Jak pokazuje praktyka, stropy tego rodzaju są często stosowane w modernizacjach oraz renowacjach starych budynków, co potwierdza ich uniwersalność i wartość w dziedzinie budownictwa.

Pytanie 13

Na podstawie fragmentu opisu technicznego określ, ile pojemników cementu i wapna należy zużyć do przygotowania zaprawy, jeżeli do jej sporządzenia zaplanowano 20 pojemników piasku?

Opis techniczny
(fragment)
(...) Do wykonania ścian zewnętrznych z pustaków Max należy zastosować zaprawę cementowo-wapienną odmiany E, o proporcji objętościowej składników 1 : 0,5 : 4. (...)
A. 4 pojemniki wapna i 2 pojemniki cementu.
B. 4 pojemniki cementu i 2 pojemniki wapna.
C. 5 pojemników cementu i 2,5 pojemnika wapna.
D. 5 pojemników wapna i 2,5 pojemnika cementu.
Odpowiedź, która wskazuje na zużycie 5 pojemników cementu i 2,5 pojemnika wapna jest właściwa, ponieważ opiera się na poprawnych proporcjach składników potrzebnych do przygotowania zaprawy. W opisie technicznym podano, że proporcje objętościowe składników wynoszą 1:0,5:4, co oznacza, że na każdy 1 pojemnik cementu przypada 0,5 pojemnika wapna i 4 pojemniki piasku. Zgodnie z planowanym użyciem 20 pojemników piasku, można obliczyć ilość pozostałych składników. 20 pojemników piasku podzielone przez 4 (czwartą część proporcji) daje 5 pojemników cementu, co odpowiada proporcji 1:4. Współczynnik dla wapna wynosi 0,5, więc 5 pojemników cementu pomnożone przez 0,5 daje 2,5 pojemnika wapna. Takie podejście nie tylko zapewnia zgodność z podanymi proporcjami, ale także wpisuje się w najlepsze praktyki budowlane, które gwarantują odpowiednią wytrzymałość i trwałość zaprawy. W praktyce, stosowanie się do tych proporcji pozwala uniknąć problemów związanych z niedostatecznym wiązaniem materiałów, co ma kluczowe znaczenie dla późniejszej jakości prac budowlanych.

Pytanie 14

Której kielni należy użyć do spoinowania fug?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Kielnia oznaczona literą C jest odpowiednim narzędziem do spoinowania fug, co jest kluczowym etapem w pracach budowlanych i wykończeniowych. Jej charakterystyczny zakrzywiony kształt umożliwia precyzyjne nakładanie zaprawy pomiędzy powierzchniami, co jest istotne dla uzyskania estetycznego i trwałego efektu. W praktyce, kielnia ta pozwala na równomierne rozłożenie materiału, co minimalizuje ryzyko powstawania pęknięć i osłabień w strukturze. Warto także zwrócić uwagę, że odpowiednie spoinowanie jest zgodne z normami budowlanymi, które wymagają zachowania określonych standardów jakości w zakresie materiałów i technologii. Użycie właściwej kielni wpływa nie tylko na wygląd, ale także na funkcjonalność i trwałość wykonanych prac. Na przykład, stosując kielnię C w trakcie układania płytek ceramicznych, można łatwiej dostosować grunt do różnorodnych kształtów i wielkości fug, co jest istotne w przypadku skomplikowanych wzorów. W związku z tym, wybór kielni C jest zgodny z najlepszymi praktykami w branży budowlanej.

Pytanie 15

Jaki strop gęstożebrowy przedstawiono na rysunku?

Ilustracja do pytania
A. Akermana
B. Teriva
C. Fert-40
D. DZ-3
Wybór odpowiedzi innych niż Teriva wskazuje na nieporozumienie dotyczące klasyfikacji stropów gęstożebrowych. Odpowiedzi takie jak Fert-40, DZ-3 czy Akermana odnoszą się do różnych systemów stropowych, które różnią się od siebie zarówno w konstrukcji, jak i w zastosowaniu. Fert-40 to system, który wykorzystuje elementy prefabrykowane, ale jego kształt i sposób montażu różnią się od stropu Teriva. Odróżnia się on także zastosowaniem innego rodzaju pustaków, co wpływa na parametry użytkowe. DZ-3 to system przestarzały, który nie spełnia współczesnych norm jakościowych i technologicznych, a Akermana, mimo że również jest stropem gęstożebrowym, charakteryzuje się inną geometrią oraz wymaganiami montażowymi. Typowe błędy prowadzące do takich wyborów to brak znajomości różnic między systemami stropowymi oraz niepełne zrozumienie ich właściwości mechanicznych. Kluczowe jest zrozumienie, że każdy z tych systemów ma swoje unikalne zastosowania i parametry, co wpływa na ich wybór w projekcie budowlanym. Wiedza na temat różnic między systemami stropowymi jest niezbędna dla inżynierów budowlanych oraz architektów, aby podejmować świadome decyzje projektowe zgodne z najlepszymi praktykami branżowymi.

Pytanie 16

Wykonanie zbrojenia wieńca stropu powinno odbywać się

A. jedynie na ścianach osłonowych budynku
B. tylko na zewnętrznej ścianie budynku, na której opiera się strop
C. wyłącznie na dwóch przeciwnych ścianach nośnych budynku, które wspierają strop
D. na wszystkich ścianach nośnych wokół całego stropu
Zbrojenie wieńca stropu dotyczy kwestii stabilności i nośności konstrukcji, dlatego ograniczanie zbrojenia do tylko jednej lub dwóch ścian nośnych jest błędnym podejściem. Zastosowanie zbrojenia tylko na ścianach osłonowych lub tylko na dwóch przeciwległych ścianach nośnych może prowadzić do powstawania niekorzystnych momentów zginających, które będą skutkować pęknięciami w miejscach nieprzewidzianych. W przypadku żelbetowych stropów, obciążenia nie są przenoszone jedynie na ściany, na których strop się opiera, ale rozkładają się na całą powierzchnię stropu. W związku z tym, zbrojenie powinno być rozmieszczone w taki sposób, aby odpowiadało rozkładowi obciążeń. Ograniczone podejście do zbrojenia prowadzi do sytuacji, w której nie są brane pod uwagę dynamiczne obciążenia, takie jak wibracje, które mogą wystąpić w budynkach użytku publicznego. Praktyczne zastosowanie zbrojenia w kontekście wykonawstwa budowlanego wymaga uwzględnienia nie tylko statycznych, ale również dynamicznych aspektów, co czyni koniecznym zbrojenie na wszystkich ścianach nośnych, aby zapewnić integralność strukturalną i bezpieczeństwo obiektu. Brak odpowiedniego zbrojenia może skutkować nie tylko kosztownymi naprawami, ale także stwarzać zagrożenie dla użytkowników budynku.

Pytanie 17

Który rysunek przedstawia schemat wiązania blokowego?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór nieprawidłowej odpowiedzi może wynikać z niepełnego zrozumienia zasad wiązania blokowego. Każdy z pozostałych rysunków przedstawia inne rodzaje wiązań, które nie spełniają kryteriów charakterystycznych dla wiązania blokowego. Na przykład, możliwe, że rysunki A, B, lub D ukazują wiązania w innych konfiguracjach, takich jak wiązanie w styk, które polega na układaniu cegieł w bezpośrednim sąsiedztwie, co może prowadzić do koncentracji obciążeń w miejscach styku. Taki sposób układania cegieł jest mniej stabilny i narażony na pęknięcia, co jest sprzeczne z zasadami dobrego budownictwa. Często podczas nauki o różnych rodzajach wiązań cegieł, nie zwraca się uwagi na praktyczne konsekwencje ich wyboru, co prowadzi do błędnych wniosków. Ważne jest, aby pamiętać, że każde wiązanie ma swoje specyficzne zastosowania oraz ograniczenia, a ich stosowanie powinno być zgodne z obowiązującymi normami budowlanymi. Zrozumienie tych różnic jest kluczowe dla właściwego projektowania i wykonawstwa, a także dla zapewnienia trwałości i bezpieczeństwa konstrukcji. Warto zatem zgłębić temat różnych rodzajów wiązań, aby umiejętnie je stosować w praktyce budowlanej, przyczyniając się tym samym do podniesienia jakości realizowanych projektów.

Pytanie 18

Na podstawie wymiarów podanych na rysunku oblicz powierzchnię ściany przeznaczonej do wyburzenia, jeżeli wysokość pomieszczenia wynosi 270 cm.

Ilustracja do pytania
A. 10,67 m2
B. 8,24 m2
C. 8,91 m2
D. 10,07 m2
Poprawna odpowiedź to 8,91 m², wynikająca z obliczenia powierzchni ściany do wyburzenia według standardowej formuły: powierzchnia = długość × wysokość. W tym przypadku, długość ściany wynosi 3,3 m, a wysokość pomieszczenia to 2,7 m. Po przemnożeniu: 3,3 m × 2,7 m = 8,91 m². To podejście jest zgodne z zasadami i standardami obliczania powierzchni w budownictwie. Praktyczne zastosowanie tej wiedzy jest kluczowe, szczególnie w kontekście planowania prac budowlanych i wyburzeniowych. Właściwe obliczenie powierzchni pozwala na określenie ilości materiałów potrzebnych do wykończenia lub naprawy, a także pomocne jest w planowaniu kosztów. Dobrą praktyką jest także uwzględnianie ewentualnych odstępstw od wymiarów, które mogą wynikać z błędów konstrukcyjnych. Warto również zaznaczyć, że znajomość zasad obliczania powierzchni jest istotna w kontekście przepisów budowlanych oraz norm dotyczących ochrony środowiska, które mogą regulować maksymalną powierzchnię do wyburzenia bez odpowiednich zezwoleń.

Pytanie 19

Tynki, które nie są przeznaczone do malowania na całej powierzchni, powinny

A. posiadać jednolitą barwę, dopuszczalne są niewielkie plamy.
B. być wolne od smug i plam, dopuszczalne są niewielkie różnice w intensywności koloru.
C. posiadać jednolitą barwę bez smug i plam.
D. posiadać jednolitą barwę, dopuszczalne są niewielkie smugi.
Odpowiedź 'mieć barwę o jednakowym natężeniu bez smug i plam' jest prawidłowa, ponieważ tynki, które nie są przewidziane do malowania, powinny charakteryzować się równomierną barwą na całej powierzchni. W praktyce oznacza to, że wszelkie niedoskonałości, takie jak smugi czy plamy, mogą wskazywać na niewłaściwe nałożenie tynku, co może prowadzić do estetycznych defektów końcowego wykończenia. W standardach budowlanych oraz w dobrych praktykach związanych z wykończeniem wnętrz, zapewnienie jednolitego wykończenia powierzchni jest kluczowe dla uzyskania wysokiej jakości estetycznej. W przypadku tynków, które mają być później malowane, konieczne jest, aby ich powierzchnia była idealnie gładka i jednolita, co pozwala na równomierne wchłanianie farby i zapobiega powstawaniu plam. Przykładem zastosowania tej zasady może być tynk dekoracyjny, który po nałożeniu powinien być dokładnie wygładzony, aby nie powodować różnic w odcieniach przy późniejszym malowaniu.

Pytanie 20

Oblicz wydatki na usunięcie ściany o wymiarach 3,5 × 2,8 m, przy założeniu, że koszt wyburzenia 1 m2 wynosi 147,00 zł.

A. 514,50 zł
B. 147,00 zł
C. 411,60 zł
D. 1 440,60 zł
Aby obliczyć koszt wyburzenia ściany o wymiarach 3,5 m na 2,8 m, najpierw należy obliczyć powierzchnię tej ściany. Powierzchnia ściany wynosi 3,5 m × 2,8 m = 9,8 m². Następnie, znając koszt wyburzenia 1 m², który wynosi 147,00 zł, obliczamy całkowity koszt wyburzenia, mnożąc powierzchnię przez cenę za metr kwadratowy: 9,8 m² × 147,00 zł/m² = 1 440,60 zł. W praktyce takie obliczenia są fundamentalne w branży budowlanej, ponieważ pozwalają na precyzyjne oszacowanie kosztów realizacji projektów budowlanych. Dobre praktyki w zakresie budżetowania uwzględniają również dodatkowe koszty, takie jak transport materiałów, wynajem sprzętu oraz ewentualne opłaty związane z uzyskaniem pozwoleń na wyburzenie. Wiedza na temat obliczeń kosztowych jest niezbędna dla architektów, inżynierów oraz wykonawców, aby mogli skutecznie planować i zarządzać projektami budowlanymi.

Pytanie 21

Jaką ilość cementu i piasku trzeba przygotować do sporządzenia zaprawy cementowo-wapiennej w proporcji 1:3:12, jeśli użyto 6 pojemników wapna?

A. 2 pojemniki cementu i 24 pojemniki piasku
B. 3 pojemniki cementu i 24 pojemniki piasku
C. 3 pojemniki cementu i 36 pojemników piasku
D. 2 pojemniki cementu i 36 pojemników piasku
Odpowiedź 2 pojemniki cementu i 24 pojemniki piasku jest poprawna, ponieważ proporcja składników zaprawy cementowo-wapiennej wynosi 1:3:12. W tej proporcji używamy jednego elementu cementu, trzech elementów wapna oraz dwunastu elementów piasku. Skoro mamy 6 pojemników wapna, to aby obliczyć ilość cementu, dzielimy 6 pojemników przez 3 (proporcja wapna do cementu), co daje 2 pojemniki cementu. Następnie, aby obliczyć ilość piasku, mnożymy 6 pojemników wapna przez 2 (proporcja wapna do piasku), co daje 24 pojemniki piasku. W praktyce, stosowanie odpowiednich proporcji składników jest kluczowe dla uzyskania optymalnych właściwości mechanicznych zaprawy, takich jak wytrzymałość na ściskanie i trwałość. Warto zwrócić uwagę na znaczenie odpowiedniego doboru materiałów w budownictwie, co jest zgodne z normami budowlanymi, takimi jak PN-EN 197-1, które regulują jakość cementu i jego zastosowanie.

Pytanie 22

Jakiego spoiwa powinno się użyć do realizacji tynku zewnętrznego w obszarach narażonych na wilgoć?

A. Wapna pokarbidowego
B. Wapna hydraulicznego
C. Gipsu budowlanego
D. Gipsu szpachlowego
Wybór wapna hydraulicznego do wykonania tynku zewnętrznego w miejscach narażonych na działanie wilgoci jest uzasadniony jego właściwościami. Wapno hydrauliczne jest spoiwem, które w przeciwieństwie do wapna gaszonego, może twardnieć zarówno na powietrzu, jak i pod wodą, co czyni je idealnym do zastosowań na zewnątrz budynków. Działa to na korzyść trwałości tynku, który musi znosić zmienne warunki atmosferyczne, w tym deszcz i wilgoć. Przykładem zastosowania wapna hydraulicznego może być tynkowanie fundamentów budynków oraz murów piwnicznych, gdzie narażenie na wodę gruntową jest intensywne. W obiektach zabytkowych, gdzie zachowanie tradycyjnych metod budowlanych jest niezwykle istotne, wapno hydrauliczne jest również preferowane ze względu na swoje właściwości paroprzepuszczalne, co pozwala na odprowadzanie wilgoci bez uszkadzania struktury budynku. Warto również wspomnieć, że zgodnie z normami budowlanymi, stosowanie wapna hydraulicznego spełnia wymogi dotyczące ochrony przed wilgocią, co potwierdzają odpowiednie badania i certyfikaty. Dlatego wapno hydrauliczne stanowi najlepszy wybór do tynków w trudnych warunkach atmosferycznych.

Pytanie 23

Oblicz wydatki związane z rozbiórką ścian o grubości 25 cm w pomieszczeniu o wymiarach 5 m × 4 m i wysokości 280 cm, jeśli koszt rozbiórki 1 m2 takiej ściany wynosi 185,00 zł?

A. 9 324,00 zł
B. 12 950,00 zł
C. 10 360,00 zł
D. 4 662,00 zł
Aby obliczyć koszt wyburzenia ścian o grubości 25 cm w pomieszczeniu, musimy najpierw obliczyć powierzchnię ścian, które będą wyburzane. Pomieszczenie ma wymiary 5 m × 4 m oraz wysokość 280 cm. Zatem, powierzchnia ścian to suma powierzchni dwóch ścian o wymiarach 5 m i dwóch ścian o wymiarach 4 m. Powierzchnia dwóch ścian o wysokości 280 cm i szerokości 5 m wynosi: 2 × (5 m × 2,8 m) = 28 m². Powierzchnia dwóch ścian o wymiarach 4 m wynosi: 2 × (4 m × 2,8 m) = 22,4 m². Łączna powierzchnia ścian wynosi 28 m² + 22,4 m² = 50,4 m². Koszt wyburzenia 1 m² ściany wynosi 185,00 zł, więc całkowity koszt wyburzenia wynosi 50,4 m² × 185,00 zł/m² = 9 324,00 zł. Takie obliczenia są istotne w branży budowlanej, gdzie precyzyjne oszacowanie kosztów jest kluczowe dla planowania budżetu i realizacji projektu. Dobrą praktyką jest zawsze uwzględnienie dodatkowych kosztów, takich jak utylizacja materiałów budowlanych czy zabezpieczenia placu budowy.

Pytanie 24

Na rysunku przedstawiono

Ilustracja do pytania
A. przekrój pionowy budynku.
B. przekrój poprzeczny.
C. widok z góry.
D. widok elewacji budynku.
Widok elewacji budynku to obraz przedstawiający zewnętrzną stronę ściany budynku z określonego punktu widzenia. W kontekście architektury, elewacja jest kluczowym elementem projektowania, gdyż to ona w pierwszej kolejności wpływa na postrzeganie budynku przez użytkowników oraz przechodniów. Odpowiednia prezentacja elewacji jest istotna nie tylko z perspektywy estetyki, ale również funkcjonalności. Przykładowo, elewacje mogą być projektowane z uwzględnieniem efektywności energetycznej, co jest istotne w kontekście zrównoważonego budownictwa. Normy budowlane, takie jak te zawarte w Ustawie Prawo budowlane, podkreślają znaczenie odpowiedniego projektowania elewacji, aby budynki były zarówno atrakcyjne, jak i zgodne z zasadami bezpieczeństwa oraz ochrony środowiska. W praktyce, architekci często przygotowują wizualizacje elewacji, aby dokładnie oddać koncepcję projektową jeszcze przed rozpoczęciem budowy, co pozwala na wczesne zauważenie potencjalnych problemów z designem i funkcjonalnością.

Pytanie 25

Do budowy ścian fundamentowych należy używać zaprawy, której głównym spoiwem jest

A. gips budowlany
B. wapno suchogaszone
C. cement portlandzki
D. wapno palone
Cement portlandzki jest podstawowym spoiwem stosowanym w murowaniu ścian fundamentowych, ponieważ zapewnia wysoką wytrzymałość oraz trwałość konstrukcji. Jego skład chemiczny, który zawiera krzemionkę, glinę, wapno i inne składniki, pozwala na uzyskanie odporności na działanie wilgoci oraz agresywnych substancji chemicznych, co jest kluczowe w przypadku fundamentów narażonych na działanie wód gruntowych. W praktyce, zaprawy murarskie na bazie cementu portlandzkiego są stosowane w różnych warunkach atmosferycznych, co czyni je uniwersalnym rozwiązaniem w budownictwie. Ponadto, stosowanie cementu portlandzkiego jest zgodne z normami budowlanymi (np. PN-EN 197-1), które określają wymagania dla materiałów budowlanych. Dobre praktyki wskazują na konieczność odpowiedniego dozowania wody oraz dodatków, co wpływa na właściwości zaprawy i jej zdolność do wiązania. W przypadku fundamentów, odpowiednie przygotowanie zaprawy ma kluczowe znaczenie dla bezpieczeństwa i stabilności całej konstrukcji.

Pytanie 26

Podczas wykonywania tynków gipsowych kolejną czynnością po wstępnym wyrównaniu zaprawy łatą tynkarską typu H jest "piórowanie", czyli wstępne gładzenie powierzchni tynku. Na której ilustracji przedstawiono tę czynność?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 4.
C. Na ilustracji 2.
D. Na ilustracji 1.
Piórowanie to kluczowy etap w procesie tynkowania, który ma na celu uzyskanie gładkiej i równej powierzchni tynku, co jest widoczne na ilustracji 3. W tej fazie pracy, wykonawca używa specjalnych narzędzi, takich jak gładzie, które pozwalają na delikatne, równomierne wygładzanie powierzchni tynku. Ta czynność jest niezwykle istotna, ponieważ dobrze wykonane piórowanie wpływa na jakość wykończenia i trwałość tynku. W praktyce, piórowanie powinno być wykonywane, gdy tynk jest jeszcze lekko wilgotny, aby móc uzyskać odpowiednią przyczepność. Przestrzeganie tej zasady jest zgodne z dobrymi praktykami branżowymi, które rekomendują, aby nie dopuścić do wyschnięcia tynku przed rozpoczęciem tego etapu. Właściwe piórowanie minimalizuje konieczność dodatkowego szlifowania w późniejszych etapach, co z kolei przyspiesza proces budowlany i obniża koszty. Umiejętność prawidłowego piórowania jest zatem jednym z podstawowych elementów wykształcenia technicznego w zawodzie tynkarza.

Pytanie 27

Podczas budowy ścian z małych bloczków z betonu komórkowego z użyciem zaprawy o właściwościach ciepłochronnych, wskazane jest stosowanie cienkowarstwowych spoin o szerokości

A. od 1,0 do 3,0 mm
B. od 5,5 do 6,5 mm
C. od 3,5 do 5,0 mm
D. do 0,5 mm
Odpowiedzi sugerujące spoiny 'od 3,5 do 5,0 mm', 'do 0,5 mm' oraz 'od 5,5 do 6,5 mm' są nieprawidłowe z różnych powodów. Spoina o grubości 'od 3,5 do 5,0 mm' jest zbyt gruba dla zastosowań z betonu komórkowego, co może prowadzić do efektu mostków termicznych. Grube spoiny zwiększają ryzyko utraty ciepła, co w efekcie prowadzi do wyższych kosztów ogrzewania. Z kolei odpowiedź 'do 0,5 mm' jest niepraktyczna, ponieważ zbyt cienkie spoiny mogą nie zapewnić odpowiedniej przyczepności zaprawy do bloczków, co z kolei może wpłynąć na stabilność muru. Takie podejście może prowadzić do osłabienia struktury, a w konsekwencji do pęknięć i innych uszkodzeń budynku. Natomiast spoiny o grubości 'od 5,5 do 6,5 mm' znacznie zwiększają ryzyko powstawania mostków termicznych oraz obniżają właściwości izolacyjne całej ściany. W praktyce, stosowanie odpowiednich grubości spoin jest kluczowe dla efektywności energetycznej budynków, a nieprzestrzeganie tej zasady może prowadzić do poważnych konsekwencji w trakcie eksploatacji. Dlatego istotne jest, aby studenci i praktycy budownictwa byli świadomi znaczenia odpowiednich grubości spoin przy użyciu betonu komórkowego i zapraw ciepłochronnych.

Pytanie 28

Przygotowanie kruszywa naturalnego do wytworzenia zaprawy tynkarskiej, która ma być użyta do nałożenia tynku zwykłego, polega na

A. przesianiu kruszywa przez sito o oczkach 5 mm
B. ustaleniu stopnia zagęszczenia kruszywa
C. ustaleniu gęstości pozornej kruszywa
D. przesianiu kruszywa przez sito o oczkach 2 mm
Przesianie kruszywa przez sito o oczkach 2 mm jest kluczowym etapem w przygotowaniu zaprawy tynkarskiej przeznaczonej do wykonania narzutu tynku zwykłego. Użycie sita o takiej wielkości oczek pozwala na usunięcie większych zanieczyszczeń oraz fragmentów kruszywa, które mogłyby negatywnie wpłynąć na właściwości mechaniczne i estetyczne gotowego tynku. Zastosowanie właściwego rozmiaru kruszywa jest zgodne z normami budowlanymi, które wskazują, że do zapraw tynkarskich powinno się używać kruszywa o odpowiednich uziarnieniach, aby zapewnić optymalną przyczepność i jednorodność zaprawy. Przesiewanie kruszywa ma także na celu poprawę jego jednorodności, co jest istotne dla uzyskania stabilnych właściwości tynków oraz zapobiega pojawianiu się pęknięć. W praktyce, w zależności od wymagań projektu, można przeprowadzać dodatkowe testy, aby określić, czy wybrane kruszywo spełnia normy jakościowe, co przyczynia się do długotrwałych i estetycznych efektów końcowych w budownictwie.

Pytanie 29

Do realizacji tynków zewnętrznych na elewacji budynku pięciokondygnacyjnego należy zastosować rusztowanie

A. warszawskiego
B. kozłowego
C. stolikowego
D. stojakowego
Wybór nieodpowiedniego typu rusztowania może prowadzić do poważnych problemów podczas wykonywania tynków zewnętrznych. Rusztowanie kozłowe, mimo że może być użyteczne w niektórych sytuacjach, nie jest przeznaczone do pracy na większych wysokościach. Jego konstrukcja ogranicza stabilność i może stwarzać realne zagrożenie dla pracowników, zwłaszcza w przypadku 5-kondygnacyjnego budynku. Podobnie, rusztowanie stolikowe jest dostosowane do prac na poziomie podłogi, a jego zastosowanie w kontekście elewacji budynku nie tylko ogranicza mobilność, ale także nie zapewnia odpowiedniego wsparcia dla materiałów i narzędzi. Co więcej, rusztowanie warszawskie, choć popularne w niektórych aplikacjach, nie spełnia wymagań dla złożonych prac budowlanych, zwłaszcza na wysokości, gdzie kluczowe jest zapewnienie bezpieczeństwa. W praktyce, decyzja o wyborze rusztowania powinna być oparta na analizie jego przeznaczenia oraz zgodności z normami i regulacjami. Wybranie niewłaściwego rozwiązania nie tylko zwiększa ryzyko wypadków, ale również może prowadzić do opóźnień w realizacji projektu z powodu konieczności wprowadzenia zmian w organizacji pracy. W związku z tym kluczowe jest, aby osoby odpowiedzialne za organizację tynkowania miały jasną wiedzę na temat specyfiki różnych typów rusztowań oraz ich zastosowania, co jest niezbędne do zapewnienia efektywności i bezpieczeństwa pracy na budowie.

Pytanie 30

Element architektoniczny rozciągający się poziomo i wystający przed lico ściany, który zabezpiecza budynek przed spływającą wodą to

A. gzyms
B. attyka
C. nadproże
D. cokół
Gzyms to taki element w architekturze, który wystaje trochę przed mur, a jego główną rolą jest ochrona budynku przed deszczem i wodą, która spływa z dachu. Dzięki temu, że ma odpowiednio ukształtowaną formę, skutecznie odprowadza wodę z dala od ścian, co zapobiega ich zawilgoceniu. I to jest mega ważne! Widziałem gzymsy w różnych stylach budowlanych – od klasycznych do nowoczesnych – i naprawdę mogą wyglądać całkiem inaczej, w zależności od projektu. Warto też pamiętać, że w budownictwie musimy brać pod uwagę lokalne warunki atmosferyczne, bo to ma ogromne znaczenie dla funkcjonalności gzymsów. Można je znaleźć w wielu starych budynkach, gdzie nie tylko chronią, ale też ładnie wyglądają, podkreślając estetykę całej elewacji.

Pytanie 31

Zanim przystąpi się do otynkowania stalowych części konstrukcji budynku, ich powierzchnię należy

A. oszlifować
B. zaimpregnować
C. nawilżyć wodą
D. chronić siatką stalową
Zarówno odpowiedzi "zwilżyć wodą", "zaimpregnować", jak i "oszlifować" nie są adekwatne do przygotowania stalowych elementów konstrukcyjnych przed otynkowaniem, co może prowadzić do wielu problemów w dalszym etapie budowy. Zwilżenie wodą nie tylko nie zapewnia odpowiedniej przyczepności tynku, ale może również spowodować powstawanie rdzy na powierzchni stali. Woda w połączeniu z metalem sprzyja korozji, co w dłuższej perspektywie prowadzi do osłabienia konstrukcji. Z kolei impregnacja stalowych elementów również nie jest właściwym rozwiązaniem, ponieważ impregnaty mają na celu ochronę przed wilgocią, a nie poprawę przyczepności tynku. Tego typu preparaty są bardziej adekwatne dla materiałów porowatych, a nie dla stali, która wymaga innych metod ochrony. Oszlifowanie stalowych elementów może być korzystne w kontekście usuwania rdzy lub zanieczyszczeń, ale nie rozwiązuje problemu związanego z przyczepnością tynku. Przygotowanie stali do otynkowania powinno koncentrować się na zastosowaniu odpowiednich materiałów ochronnych, takich jak siatka stalowa, zgodnie z praktykami budowlanymi, które gwarantują trwałość i stabilność konstrukcji. Ignorowanie tych aspektów może prowadzić do poważnych usterek w budynku i znaczących kosztów naprawczych.

Pytanie 32

Na rysunku przedstawiony jest budynek

Ilustracja do pytania
A. dwukondygnacyjny i podpiwniczony.
B. z poddaszem użytkowym.
C. dwukondygnacyjny i niepodpiwniczony.
D. z dwuspadowym dachem.
Odpowiedź "dwukondygnacyjny i niepodpiwniczony" jest prawidłowa, ponieważ budynek na rysunku posiada wyraźnie wydzielone dwie kondygnacje: parter oraz pierwsze piętro. W zgłoszonej wysokości pomieszczeń poniżej poziomu 0.0 wynoszącej -0.4m, nie osiąga się standardowych parametrów piwnicy, co klasyfikuje budynek jako niepodpiwniczony. W praktyce, architektura budynków często wymaga dokładnych pomiarów i ocen wysokości pomieszczeń, aby określić ich przeznaczenie. Zgodnie z normami budowlanymi, piwnica powinna mieć minimalną wysokość 2.4 m, aby mogła być uznana za przestrzeń użytkową. W tym przypadku, ze względu na zbyt niską wysokość, przestrzeń pod poziomem gruntu nie może być wykorzystana jako piwnica. Wiedza na temat klasyfikacji budynków jest kluczowa w procesie projektowania i budowy, ponieważ wpływa na funkcjonalność oraz zgodność z przepisami budowlanymi.

Pytanie 33

W celu przygotowania zapraw cementowo-wapiennych zimą, zaleca się wykorzystanie jako spoiwa

A. cementu portlandzkiego
B. wapna hydratyzowanego
C. wapna hydraulicznego
D. cementu hutniczego
Wybór wapna hydraulicznego jako spoiwa do zapraw cementowo-wapiennych w warunkach zimowych nie jest właściwy, gdyż tego typu wapno, mimo że posiada zdolność do twardnienia w wodzie, nie radzi sobie dobrze w niskich temperaturach. Wapno hydrauliczne wymaga określonej temperatury i wilgotności do skutecznego wiązania, a w zimowych warunkach może prowadzić do osłabienia struktury zaprawy. Z kolei cement hutniczy, który jest produktem ubocznym przemysłu stalowego, ma zastosowanie głównie w specjalistycznych konstrukcjach, ale jego użycie w standardowych zaprawach cementowo-wapiennych jest rzadkie i wymaga szczegółowych badań wytrzymałościowych, co czyni go niewłaściwym wyborem na zimę. Cement portlandzki, choć powszechnie stosowany w budownictwie, również nie jest idealnym rozwiązaniem na zimę, ponieważ jego proces schnięcia i twardnienia jest uzależniony od temperatury otoczenia, co w zimnych warunkach może prowadzić do problemów z utwardzeniem i trwałością. W praktyce błędne wnioski mogą wynikać z mylnego przekonania, że wszystkie rodzaje wapna i cementu mogą być stosowane zamiennie, co prowadzi do niedoceniania ich specyficznych właściwości oraz wpływu temperatury na procesy chemiczne zachodzące w zaprawach.

Pytanie 34

Jaką minimalną długość powinno mieć oparcie nadproża L19 na murze?

A. 10 cm
B. 22 cm
C. 6 cm
D. 19 cm
W przypadku długości oparcia nadproża, istotne jest, aby uwzględnić nie tylko minimalne wymagania, ale również całokształt aspektów technicznych. Odpowiedzi na poziomie 6 cm, 19 cm, czy 22 cm są w dużej mierze nieadekwatne do obowiązujących norm. Wybór długości 6 cm jest zdecydowanie zbyt mały, co naraża konstrukcję na niebezpieczeństwo przełamania pod wpływem obciążeń. Praktyka budowlana zaleca znacznie większe wartości, aby zapewnić odpowiednią stabilność. Z kolei 19 cm i 22 cm jako długości oparcia są również niewłaściwe, ponieważ mogą prowadzić do nadmiernego obciążenia ścian, co z kolei może skutkować niepożądanymi efektami, takimi jak pęknięcia ścian czy osiadanie budynku w dłuższej perspektywie. Zbyt duża długość oparcia może także skutkować nieefektywnym przenoszeniem obciążeń, co jest sprzeczne z zasadami ekonomicznego projektowania. W praktyce, kluczowe jest przestrzeganie standardów dotyczących długości oparcia, które pomagają zminimalizować ryzyko uszkodzeń i zwiększają trwałość konstrukcji. Podsumowując, zrozumienie zasad projektowania nadproży oraz ich prawidłowego oparcia jest niezbędne dla każdego inżyniera budowlanego, aby unikać błędów, które mogą prowadzić do poważnych konsekwencji w budownictwie.

Pytanie 35

Jakie materiały budowlane mogą być użyte do tworzenia murowanych ścian fundamentowych?

A. cegły silikatowe
B. pustaki typu Max
C. bloczki z betonu komórkowego
D. bloczki z betonu zwykłego
Bloczki z betonu zwykłego są doskonałym materiałem do wykonywania murowanych ścian fundamentowych. Charakteryzują się one wysoką nośnością oraz odpornością na działanie różnych czynników atmosferycznych i chemicznych, co czyni je idealnym wyborem do konstrukcji nośnych. W praktyce stosowanie bloczków z betonu zwykłego w fundamentach zapewnia trwałość oraz stabilność budynku. Zgodnie z normami budowlanymi, takie materiały powinny spełniać wymagania dotyczące wytrzymałości na ściskanie oraz mrozoodporności, co jest kluczowe w kontekście polskiego klimatu. Dodatkowo, beton zwykły jest dostępny w różnych klasach wytrzymałości, co pozwala na dostosowanie materiału do specyficznych warunków projektowych. Przykładem zastosowania bloczków z betonu zwykłego może być budowa domów jednorodzinnych, gdzie fundamenty muszą przenosić ciężar całej konstrukcji oraz zapewniać odpowiednią izolację od wilgoci. Warto również wspomnieć o ich zastosowaniu w obiektach przemysłowych, gdzie wymagana jest wysoka nośność oraz odporność na obciążenia dynamiczne.

Pytanie 36

Na podstawie zapotrzebowania do budowy ścian obiektu potrzeba 500 sztuk bloczków gazobetonowych. Cena jednej palety tych bloczków wynosi 1200,00 zł. Jakie będą całkowite koszty zakupu, jeśli w każdej palecie jest 24 bloczki, a sprzedaż odbywa się tylko w pełnych paletach?

A. 25 000,00 zł
B. 25 200,00 zł
C. 24 200,00 zł
D. 24 000,00 zł
Aby obliczyć całkowite koszty zakupu bloczków gazobetonowych, należy najpierw ustalić, ile palet będzie potrzebnych, a następnie pomnożyć liczbę palet przez koszt jednej palety. W przedstawionym przypadku, mamy 500 bloczków i każdy paleta zawiera 24 bloczki. Dlatego liczba potrzebnych palet wynosi 500 / 24 = 20,83, co oznacza, że musimy zakupić 21 pełnych palet, ponieważ sprzedaż odbywa się wyłącznie w kompletnych paletach. Koszt jednej palety wynosi 1200,00 zł, więc całkowity koszt zakupu wynosi 21 * 1200,00 zł = 25 200,00 zł. Ustalając zapotrzebowanie materiałowe w budownictwie, ważne jest uwzględnienie takich parametrów jak pojemność transportowa materiałów oraz zasady zakupu hurtowego, co pozwala na optymalizację kosztów i efektywność logistyczną. W praktyce, wiele przedsiębiorstw budowlanych korzysta z tego typu kalkulacji, aby precyzyjnie planować budżet oraz harmonogram dostaw, co jest zgodne z dobrymi praktykami zarządzania projektem budowlanym.

Pytanie 37

Na podstawie zestawienia kosztów robocizny oblicz wynagrodzenie robotnika należne za montaż w remontowanym pomieszczeniu 5 okien o wymiarach 120 × 150 cm i 2 drzwi o wymiarach 90 × 210 cm.

Zestawienie kosztów robocizny
koszt montażu okna – 73,00 zł/m
koszt montażu drzwi – 205,00 zł/szt.
A. 775,00 zł
B. 2 091,00 zł
C. 1 971,00 zł
D. 2 381,00 zł
Niewłaściwe odpowiedzi często wynikają z błędnych założeń dotyczących obliczeń powierzchni lub nieprawidłowego ustalenia kosztów montażu. W przypadku obliczania wynagrodzenia za montaż, kluczowe jest zrozumienie zarówno jednostek miary, jak i czynników wpływających na koszt robocizny. Na przykład, pomijając istotne elementy, takie jak różnice w wielkości okien i drzwi, można podjąć błędne próby szacowania kosztów. Często występującym błędem jest także nieprawidłowe pomnożenie liczby sztuk przez jednostkowy koszt montażu. Innym typowym myśleniem jest przyjmowanie niewłaściwych stawek, które mogą być oparte na przestarzałych danych, co prowadzi do znacznych nieścisłości w końcowym wyniku. Dlatego tak ważne jest, aby przed przystąpieniem do obliczeń dokładnie zweryfikować wszelkie wartości oraz metodykę obliczeń. Ustalając wynagrodzenie, należy również uwzględnić dodatkowe koszty, które mogą być związane z montażem, takie jak materiały czy transport. Nieprawidłowe zrozumienie tych elementów prowadzi często do mylnego wyliczenia całkowitych kosztów, co negatywnie wpływa na prawidłowość oszacowania wynagrodzenia. Właściwa metoda obliczeń jest kluczowa dla uzyskania rzetelnych informacji o kosztach robocizny w branży budowlanej.

Pytanie 38

Na którym rysunku przedstawiono kielnię do kształtowania spoin?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Na rysunku A przedstawiono kielnię do kształtowania spoin, która jest kluczowym narzędziem w budownictwie, szczególnie w pracach murowych. Kielnia ta charakteryzuje się wąską, długą i płaską powierzchnią roboczą, co umożliwia precyzyjne formowanie spoin między cegłami. Przykładem zastosowania kielni do kształtowania spoin może być murowanie ścian, w których ważne jest, aby spoiny były estetyczne i miały odpowiednią głębokość. Przy jej użyciu można również wygładzać zaprawę, co zwiększa trwałość i estetykę konstrukcji. Standardy budowlane, takie jak PN-B-06265, podkreślają znaczenie odpowiedniego formowania spoin, co wpływa na jakość wykonania robót budowlanych. Dobrze uformowane spoiny wpływają nie tylko na wygląd, ale również na izolacyjność termiczną i akustyczną budynku, dlatego znajomość i umiejętność stosowania kielni do kształtowania spoin jest niezbędna dla każdego murarza.

Pytanie 39

Aby połączyć kształtki ceramiczne narażone na wysokie temperatury, należy użyć zaprawy

A. żywiczej
B. polimerowej
C. krzemionkowej
D. cementowej
Krzemionkowa zaprawa jest najodpowiedniejszym wyborem do łączenia kształtek kamionkowych narażonych na działanie wysokiej temperatury ze względu na swoje właściwości termiczne i chemiczne. Krzemionka, jako główny składnik, wykazuje doskonałą odporność na wysokie temperatury, co czyni ją idealnym materiałem do stosowania w piecach, kominkach oraz innych instalacjach, gdzie wymagana jest trwałość w ekstremalnych warunkach. W praktyce, zaprawa krzemionkowa nie tylko łączy elementy, ale także zapewnia ich stabilność oraz odporność na szoki termiczne. W budownictwie ceramicznym i piekarskim, stosowanie zaprawy krzemionkowej zgodnie z normami PN-EN 998-2 pozwala na uzyskanie trwałych i odpornych na działanie wysokich temperatur połączeń. Dlatego w kontekście zastosowania w warunkach wysokotemperaturowych, krzemionkowa zaprawa jest najlepszym wyborem, co potwierdzają standardy branżowe oraz praktyki inżynieryjne.

Pytanie 40

Wskaż oznaczenie graficzne zaprawy stosowane na rysunkach budowlanych.

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Odpowiedź "B" jest właściwa, ponieważ zgodnie z polskimi normami, oznaczenie graficzne zaprawy murarskiej na rysunkach budowlanych reprezentowane jest przez symbole składające się z małych kropek. Tego rodzaju oznaczenie umieszczane jest w projektach budowlanych, aby ułatwić wykonawcom identyfikację używanych materiałów i technik budowlanych. Użycie takich symboli znacznie zwiększa czytelność rysunków, co jest szczególnie istotne w przypadku kompleksowych projektów, gdzie precyzyjna komunikacja pomiędzy projektantami a wykonawcami jest kluczowa. Oznaczenie to jest zgodne z normą PN-EN 1990, która określa zasady projektowania budowlanego, w tym konieczność stosowania ustalonych symboli i oznaczeń, aby zapewnić jednolitość i zrozumiałość dokumentacji. W praktyce architektonicznej, znajomość tych symboli jest niezbędna, aby uniknąć nieporozumień i błędów w realizacji projektów, co może prowadzić do kosztownych przeróbek i opóźnień w budowie.