Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 21 lutego 2026 15:17
  • Data zakończenia: 21 lutego 2026 15:36

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Kiedy powinno się dokonać pomiaru robót rozbiórkowych ścian?

A. W trakcie wykonywania robót rozbiórkowych
B. Po finalizacji rozbiórki ścian
C. Po zakończeniu rozbiórki ścian oraz usunięciu gruzu
D. Przed przystąpieniem do robót rozbiórkowych
Przeprowadzenie obmiaru robót rozbiórkowych ścian przed rozpoczęciem prac jest kluczowym krokiem w procesie planowania i realizacji projektu budowlanego. Obmiar pozwala na dokładne określenie zakresu prac, co jest niezbędne do wyceny projektu oraz przygotowania odpowiednich zasobów. W praktyce, przed rozpoczęciem rozbiórki, należy zmierzyć nie tylko powierzchnię ścian, ale również uwzględnić dodatkowe czynniki, takie jak izolacje, rodzaj materiałów użytych w budowie oraz wszelkie elementy instalacyjne, które mogą wpłynąć na proces rozbiórki. Dobrą praktyką jest sporządzenie dokumentacji fotograficznej i rysunkowej stanu istniejącego, co pomoże w analizie i późniejszym rozliczeniu prac. Zgodnie z normami budowlanymi, obmiar powinien być przeprowadzany zgodnie z obowiązującymi przepisami, co zapewnia nie tylko bezpieczeństwo, ale również zgodność z projektem. Takie podejście pozwala na identyfikację potencjalnych problemów przed rozpoczęciem prac, co z kolei może prowadzić do ograniczenia kosztów i czasu realizacji projektu.

Pytanie 2

Na podstawie danych zawartych w tablicy z KNR oblicz, ile zaprawy cementowo-wapiennej M30 potrzeba do wykonania 25 m2tynku kategorii III.

Tynki zwykłe biegów klatek schodowych
Nakłady na 100 m2Tablica 0811
Lp.WyszczególnienieJednostki miary, oznaczeniaBiegi klatek schodowych
kategoria tynku
symbole etorodzaje zawodów, materiałów i maszyncyfroweliteroweIIIIIIV
abcde010203
202380800Zaprawa wapienna M4060m3-0,150,14
212380802Zaprawa cementowo-wapienna M15060m31,790,900,91
222380803Zaprawa cementowo-wapienna M30060m30,230,21-
232380804Zaprawa cementowo-wapienna M50060m30,22-0,21
242380806Zaprawa cementowa M50060m3-1,081,08
252380807Zaprawa cementowa M80060m3-0,220,22
7034000Wyciąg148m-g3,514,004,00
A. 0,0575 m3
B. 0,0555 m3
C. 0,0525 m3
D. 0,0595 m3
Poprawna odpowiedź to 0,0525 m3, co zostało obliczone na podstawie danych zawartych w tablicy KNR dla zaprawy cementowo-wapiennej M30, która wskazuje, że do wykonania tynku kategorii III na powierzchni 100 m2 potrzeba 0,21 m3 zaprawy. Aby dostosować tę wartość do mniejszej powierzchni wynoszącej 25 m2, zastosowano prostą proporcję. Wykonując obliczenia, dzielimy 0,21 m3 przez 100 m2, a następnie mnożymy przez 25 m2, co prowadzi do wyniku 0,0525 m3. Taka metoda obliczeń jest zgodna z branżowymi standardami, które zalecają stosowanie dokładnych proporcji w celu uzyskania odpowiedniej ilości materiałów budowlanych. Takie podejście jest niezbędne nie tylko dla oszczędności, ale także dla zapewnienia, że tynk jest odpowiednio wytrzymały i trwały. W praktyce, znajomość takich obliczeń pozwala na efektywne zarządzanie kosztami i zasobami w projektach budowlanych, co jest kluczowe w każdym przedsięwzięciu budowlanym.

Pytanie 3

Jaki będzie koszt mieszanki betonowej potrzebnej do zbudowania dwóch słupów o wymiarach 60×60 cm i wysokości 3 m każdy, zakładając, że norma zużycia mieszanki betonowej wynosi 1,02 m3/m3, a cena 325,00 zł/m3?

A. 358,02 zł
B. 351,00 zł
C. 702,00 zł
D. 716,04 zł
Często w obliczeniach objętości materiałów budowlanych zdarzają się pomyłki, a to może wpłynąć na koszt całego projektu. Zdarza się, że ludzie źle obliczają objętość słupów, co jest kluczowe w kwestii wyceny. Na przykład, niektórzy mogą się pomylić przy obliczaniu przekroju, mieszając jednostki miary czy źle mnożąc wymiary. Czasem zapominają też o normach zużycia betonu, co może skutkować błędnym oszacowaniem kosztów. No i aktualne ceny na rynku też są mega ważne, bo mogą się różnić w zależności od miejsca czy dostawcy. W praktyce budowlanej niepoprawne obliczenia mogą prowadzić do dużych problemów z budżetem czy zamówieniem zbyt małej ilości materiałów, co spowalnia całą robotę. Jeszcze często myli się normy zużycia, co może źle wpłynąć na jakość. Dlatego w projektach budowlanych warto mieć pewność, że dokładnie liczymy i korzystamy z aktualnych danych, bo to daje lepsze oszacowanie kosztów i pewność, że projekt pójdzie po myśli.

Pytanie 4

Który etap naprawy spękanego tynku przedstawiono na fotografii?

Ilustracja do pytania
A. Nakładanie zaprawy szpachlowej.
B. Poszerzanie rysy.
C. Gruntowanie obrzeża rysy.
D. Oczyszczanie obrzeża rysy.
Poszerzanie rysy to kluczowy etap w procesie naprawy spękanego tynku. Na przedstawionej fotografii widzimy osobę, która za pomocą szpachelki poszerza rysę, co jest istotne dla zapewnienia trwałości naprawy. Poszerzając rysę, tworzymy większą powierzchnię dla przyczepności zaprawy szpachlowej, co pozwala na skuteczniejsze wypełnienie ubytków i zapobiega ponownemu pojawieniu się pęknięć. Zgodnie z zasadami dobrych praktyk budowlanych, przed nałożeniem nowego materiału naprawczego należy dokładnie przygotować powierzchnię, aby uniknąć problemów w przyszłości. Warto również pamiętać, że odpowiednie poszerzenie rysy może wymagać zastosowania narzędzi o różnych kształtach i rozmiarach, aby dostosować się do specyfiki uszkodzenia. Po zakończeniu tego etapu, kolejną czynnością jest gruntowanie obrzeża rysy, co dodatkowo zwiększa przyczepność. Dzięki tym działaniom można osiągnąć długotrwałe efekty naprawy, co przekłada się na zadowolenie właścicieli budynków i redukcję kosztów związanych z późniejszymi naprawami. Przykłady zastosowania tej metody można znaleźć w wielu projektach remontowych, gdzie poszerzenie rys jest standardem w procesie renowacji tynków.

Pytanie 5

Jaką izolację wykonano na fragmencie ściany przedstawionej na rysunku?

Ilustracja do pytania
A. Przeciwdrganiową.
B. Paroszczelną.
C. Termiczną.
D. Przeciwwilgociową.
Odpowiedź termiczna jest poprawna, ponieważ na przedstawionym rysunku widoczna jest warstwa materiału izolacyjnego, który jest powszechnie stosowany w budownictwie celu redukcji strat ciepła. Izolacja termiczna ma na celu utrzymanie optymalnej temperatury wewnątrz budynku, co przekłada się na komfort użytkowników oraz oszczędności energetyczne. W praktyce, materiał taki jak wełna mineralna, styropian czy pianka poliuretanowa jest umieszczany w ścianach, dachach i podłogach, aby zminimalizować wymianę ciepła z otoczeniem. Standardy, takie jak norma PN-EN 13162, określają wymagania dotyczące materiałów izolacyjnych, a ich odpowiedni dobór wpływa na efektywność energetyczną budynku. Dobrze zaprojektowana izolacja nie tylko poprawia komfort, ale również zmniejsza koszty ogrzewania i chłodzenia, co jest kluczowe w kontekście zrównoważonego budownictwa.

Pytanie 6

Na rysunku przedstawiono rusztowanie

Ilustracja do pytania
A. wspornikowe.
B. warszawskie.
C. koszowe.
D. stojakowe.
Rusztowanie warszawskie, które zostało przedstawione na zdjęciu, to konstrukcja charakteryzująca się prostym układem elementów oraz wysoką ergonomią montażu i demontażu. Jego budowa opiera się na systemie poziomych i pionowych rur, które są ze sobą połączone w sposób zapewniający stabilność i bezpieczeństwo. W praktyce, rusztowanie to jest niezwykle popularne w budownictwie, zwłaszcza w pracach wysokościowych, gdzie niezbędne jest uzyskanie dostępu do trudno dostępnych miejsc. Warto zaznaczyć, że zastosowanie rusztowania warszawskiego wiąże się z przestrzeganiem odpowiednich norm, takich jak PN-EN 12810 oraz PN-EN 12811, które regulują kwestie bezpieczeństwa konstrukcji oraz obciążeń, jakie mogą być na nie nałożone. Dzięki prostej konstrukcji, rusztowanie to można szybko zmontować i zdemontować, co pozwala na efektywne zarządzanie czasem pracy na budowie. Co więcej, jego zastosowanie w różnych projektach budowlanych, od renowacji po nowe konstrukcje, czyni go wszechstronnym rozwiązaniem w branży budowlanej.

Pytanie 7

Na rysunku przedstawiono fragment lica muru grubości jednej cegły, wykonanego z zastosowaniem wiązania

Ilustracja do pytania
A. kowadełkowego.
B. gotyckiego.
C. amerykańskiego.
D. weneckiego.
Wiązanie gotyckie jest zastosowaniem techniki murowania, która charakteryzuje się przesunięciem cegieł w kolejnych rzędach o połowę ich długości. Taki sposób układania cegieł nie tylko wpływa na estetykę muru, ale również zwiększa jego stabilność oraz wytrzymałość. Zastosowanie tego wiązania jest szczególnie widoczne w architekturze gotyckiej, gdzie budynki musiały sprostać wysokim wymaganiom konstrukcyjnym, a jednocześnie prezentować się w sposób elegancki i harmonijny. Przykładem zastosowania wiązania gotyckiego mogą być katedry, w których wysokość i wąskie łuki były możliwe dzięki zastosowaniu właśnie tej techniki. Dodatkowo, wiązanie to jest zgodne z zasadami dobrej praktyki budowlanej, które podkreślają znaczenie odpowiedniego rozkładu obciążenia oraz estetyki w budownictwie. W profesjonalnym murowaniu, wiązanie gotyckie jest szczególnie cenione za swoje właściwości, które przyczyniają się do długotrwałości i wytrzymałości obiektów budowlanych.

Pytanie 8

Jakie są całkowite wydatki (materiałów i robocizny) na przygotowanie 5 m3 betonu, jeśli koszty materiałów do 1 m3 wynoszą 200 zł, a za robociznę należy dodać 20% wartości mieszanki?

A. 2000 zł
B. 1200 zł
C. 2420 zł
D. 1020 zł
Dobra robota z tą odpowiedzią! Jak to obliczyłeś? Koszt materiałów na 1 m3 betonu to 200 zł, więc dla 5 m3 wychodzi 1000 zł. Potem doliczyłeś robociznę, co jest super ważne, bo to 20% od materiałów, czyli dodatkowe 200 zł. Łącznie daje to 1200 zł. W budownictwie takie obliczenia to podstawa, bo bez tego łatwo można wpaść w kłopoty finansowe. Zawsze warto też mieć na uwadze, że ceny materiałów mogą się zmieniać w trakcie pracy, więc dobrze się przygotować na różne sytuacje.

Pytanie 9

Jaką minimalną grubość powinny mieć przegródki międzykanałowe w kominach murowanych z cegły?

A. 1/3 cegły
B. 3/4 cegły
C. 1/2 cegły
D. 1/4 cegły
Kiedy wybierasz grubość przegród w kominach murowanych z cegły, to naprawdę trzeba na to uważać, bo nieodpowiednie podejścia mogą skutkować poważnymi problemami. Odpowiedzi, które sugerują 1/4 cegły, 1/3 cegły czy 3/4 cegły, są niezgodne z normami budowlanymi i zasadami inżynierii kominowej. Grubości 1/4 i 1/3 cegły są za małe, żeby zapewnić dobrą izolację i ochronić przed spalinami. To może prowadzić do nieszczelności, a to z kolei zwiększa ryzyko zatrucia tlenkiem węgla. A grubość 3/4 cegły, choć może wydawać się dobra, jest za duża i nieopłacalna, co tylko komplikuje sprawę, bo zwiększa masę komina i wymaga lepszych fundamentów. Często ludzie traktują te przegrody jako coś mniej ważnego niż inne elementy konstrukcji, a to błąd. W rzeczywistości pełnią one kluczową rolę w bezpieczeństwie i efektywności systemu kominowego. Dlatego ważne jest, żeby trzymać się norm i przepisów budowlanych, bo to zapewnia nie tylko funkcjonalność, ale też bezpieczeństwo dla użytkowników budynków.

Pytanie 10

Izolację przeciwwilgociową, gdy wykonujemy podłogę na gruncie, należy umieścić na

A. izolacji cieplnej
B. gruntowym podłożu
C. podkładzie posadzki
D. chudym betonie
Izolacja przeciwwilgociowa jest potrzebna, żeby budynki nie miały problemów z wilgocią, ale ważne jest gdzie ją umieścimy, bo to wpływa na to, jak dobrze działa. Ułożenie jej na podkładzie pod posadzką, na gruncie albo na izolacji termicznej to błędy. Jak położysz izolację na podkładzie pod posadzką, to ona może się uszkodzić przez obciążenia i nie będzie dobrze działać. Na podłożu gruntowym to też kiepski pomysł, bo grunt to właśnie jest źródło wilgoci, więc nie ochroni nas przed nią. Poza tym, może to prowadzić do kondensacji pary wodnej, co sprzyja pleśni i grzybom. Izolacja termiczna, mimo że jest ważna dla oszczędności energii, nie chroni przed wilgocią z gruntu i jej stosowanie w takim kontekście może być mylące. Duży błąd to nieodróżnienie różnych rodzajów izolacji i ich przeznaczenia, co potem prowadzi do źle zaplanowanych rozwiązań budowlanych i w konsekwencji do wysokich kosztów napraw.

Pytanie 11

Który z materiałów stosuje się do wykonania izolacji termicznej w budynkach?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Materiał oznaczony literą C, czyli wełna mineralna, jest bardzo często używany w budownictwie, zwłaszcza do izolacji termicznej. Ma naprawdę świetne właściwości, jeśli chodzi o ograniczanie strat ciepła w budynkach, co na pewno pomoże obniżyć rachunki za ogrzewanie. Co więcej, wełna mineralna jest też ogniotrwała, co daje dodatkowe bezpieczeństwo, zmniejszając ryzyko, że ogień się rozprzestrzeni. W praktyce korzysta się z niej nie tylko w dachach i ścianach, ale też w podłogach, co czyni ją bardziej uniwersalnym materiałem budowlanym. Są też standardy, takie jak PN-EN 13162, które mówią o wymaganiach jakościowych, a to potwierdza, że wełna mineralna jest naprawdę skuteczna. A jeśli chodzi o akustykę, to też działa, co wpływa na komfort w pomieszczeniach. Warto zainwestować w ten materiał, żeby zwiększyć efektywność energetyczną i poprawić komfort cieplny w budynkach.

Pytanie 12

Na ilustracji przedstawiono fragment lica muru wykonanego w wiązaniu

Ilustracja do pytania
A. słowiańskim.
B. weneckim.
C. polskim.
D. holenderskim.
No to odpowiedź 'polskim' jest rzeczywiście trafiona. To wiązanie ceglne, które widzisz na obrazku, ma taki ciekawy układ cegieł, gdzie każda warstwa jest przesunięta o pół cegły w stosunku do poprzedniej. To nie tylko fajnie wygląda, ale też sprawia, że mur jest bardziej stabilny i wytrzymały. Wiązanie polskie jest popularne w tradycyjnej architekturze w Polsce, zwłaszcza w zabytkowych budynkach. Możesz je zauważyć w zamkach, kościołach czy starych kamienicach z czasów renesansu i baroku. Fajnie jest znać różne rodzaje wiązań ceglanych, szczególnie jeśli planujesz być architektem albo budowlańcem. Wiedza o tym, jakie techniki stosować, jest ważna – przemyśl, co będzie pasować do stylu budynku i jakie ma być wrażenie wizualne. No i warto też znać lokalne tradycje budowlane, bo to pomaga zachować nasze dziedzictwo kulturowe.

Pytanie 13

Jaką wytrzymałość ma klasa zaprawy na

A. ściśnięcie
B. przesuwanie
C. rozciąganie
D. ugięcie
Klasa zaprawy rzeczywiście odnosi się do jej wytrzymałości na ściskanie. Wytrzymałość na ściskanie jest kluczowym parametrem, który określa zdolność materiału do przenoszenia obciążeń działających w kierunku osiowym, co jest szczególnie istotne w budownictwie i inżynierii lądowej. W praktyce, zaprawy murarskie są stosowane do łączenia elementów budowlanych, takich jak cegły czy bloczki, a ich wytrzymałość na ściskanie wpływa na trwałość całej konstrukcji. Zgodnie z normami PN-EN 1015-11, wytrzymałość na ściskanie zaprawy może być klasyfikowana według różnych klas, co pozwala inżynierom na dobór odpowiedniego materiału do danego zastosowania, np. w budynkach mieszkalnych czy obiektach użyteczności publicznej. Wytrzymałość na ściskanie zaprawy jest zatem kluczowym wskaźnikiem jakości, którego pomiar przeprowadza się w warunkach laboratoryjnych, a jej znajomość pozwala na optymalizację kosztów oraz zapewnienie bezpieczeństwa konstrukcji.

Pytanie 14

Na podstawie danych zawartych w tabeli oblicz ilość żwiru potrzebnego do wykonania 0,5 m3mieszanki betonowej klasy C 16/20.

Receptury robocze na 1 m3 mieszanki betonowej
klasa betonucementżwirpiasekwoda
C 8/10341 kg661 l367 l216 l
C 12/16362 kg642 l351 l227 l
C 16/20367 kg770 l426 l223 l
A. 642 l
B. 770 l
C. 385 l
D. 213 l
Aby obliczyć ilość żwiru potrzebnego do wykonania 0,5 m³ mieszanki betonowej klasy C 16/20, należy skorzystać z proporcji podanej w tabeli dla 1 m³. Zgodnie z branżowymi standardami, dla mieszanki betonowej klasy C 16/20 typowe proporcje to: 1 część cementu, 2 części piasku i 4 części żwiru. Dzięki tym proporcjom można obliczyć, że dla 1 m³ mieszanki potrzeba 770 l żwiru. Skoro potrzebujemy jedynie 0,5 m³ mieszanki, musimy odpowiednio przeskalować wartość żwiru. Dlatego 770 l x 0,5 = 385 l, co jest poprawnym wynikiem. Tego typu kalkulacje są kluczowe w inżynierii budowlanej, aby zapewnić odpowiednie właściwości mieszanki betonowej, takie jak wytrzymałość i trwałość. Przykładowo, przy projektowaniu fundamentów budynków, dokładność w obliczeniach materiałowych wpływa na bezpieczeństwo konstrukcji. Znajomość proporcji oraz umiejętność ich przeskalowania do potrzeb projektu jest podstawą pracy każdego inżyniera budowlanego.

Pytanie 15

Na którym rysunku przedstawiono narzędzie służące do narzucania zaprawy przy tynkowaniu ręcznym?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Na rysunku D przedstawiono kielnię murarską, która jest kluczowym narzędziem w procesie tynkowania ręcznego. Kielnia murarska służy do precyzyjnego nakładania zaprawy na powierzchnię, co jest niezwykle istotne, aby zapewnić równomierne pokrycie i właściwe przyczepienie materiału. Użycie kielni pozwala na kontrolowanie ilości zaprawy, co z kolei wpływa na jakość finalnego wykończenia. W praktyce, dobra technika pracy z kielnią obejmuje odpowiednie kątowanie, a także umiejętność wykonania gładkich ruchów, co minimalizuje ryzyko powstawania nierówności. Warto też zaznaczyć, że w tynkowaniu ręcznym, korzystanie z odpowiednich narzędzi, takich jak kielnia, jest zgodne z najlepszymi praktykami budowlanymi, które podkreślają znaczenie precyzji i jakości robót budowlanych. Dodatkowo, umiejętność posługiwania się tym narzędziem jest niezbędna w wielu innych dziedzinach budownictwa, takich jak murowanie czy stawianie ścianek działowych.

Pytanie 16

W trakcie realizacji tynków wewnętrznych wykorzystuje się rusztowania

A. stojakowe
B. na wysuwnicach
C. drabinowe
D. na kozłach
Odpowiedzi, które nie uwzględniają zastosowania kozłów tynkarskich, często prowadzą do mylnych wniosków na temat efektywności oraz bezpieczeństwa pracy przy tynkowaniu. Drabiny, mimo że mogą być stosowane w niektórych przypadkach, ograniczają mobilność i zwiększają ryzyko upadków. Użytkownik pracujący na drabinie nie ma stabilnej platformy roboczej, co utrudnia precyzyjne nakładanie tynku oraz może prowadzić do niebezpiecznych sytuacji. Z kolei rusztowania na wysuwnicach, chociaż oferują pewną elastyczność, mogą być nieodpowiednie do tynków wewnętrznych z uwagi na ich konstrukcję, która nie zawsze zapewnia odpowiednią stabilność przy niestabilnych lub nierównych powierzchniach. Stojakowe rusztowania, choć czasami stosowane, nie są optymalne do prac wewnętrznych, gdzie z reguły wymagane jest dostosowanie wysokości oraz stabilność. Kluczowym błędem myślowym jest nieuznawanie, że odpowiedni dobór narzędzi i sprzętu ma kluczowe znaczenie dla bezpieczeństwa oraz efektywności pracy. Prawidłowe wykorzystanie kozłów tynkarskich zgodnie z normami BHP zwiększa wydajność i zmniejsza ryzyko urazów, co czyni je najbardziej odpowiednim rozwiązaniem dla tego typu prac.

Pytanie 17

Jaki typ spoiwa wykorzystuje się do przygotowania zaprawy do murowania ścian fundamentowych?

A. Wapno hydratyzowane
B. Gips budowlany
C. Cement portlandzki
D. Wapno gaszone
Gips budowlany, choć powszechnie stosowany w wykończeniach wnętrz, nie jest odpowiednim materiałem do murowania ścian fundamentowych. Jego właściwości nie pozwalają na uzyskanie odpowiedniej wytrzymałości i odporności na wilgoć, co jest kluczowe w kontekście fundamentów. Gips wiąże pod wpływem wody, ale nie ma zdolności do wiązania w długotrwałym kontakcie z nią, co czyni go nietrwałym w warunkach fundamentowych. Z kolei wapno hydratyzowane, mimo że ma swoje zastosowanie w budownictwie, nie zapewnia takiej samej wytrzymałości na ściskanie jak cement portlandzki. Wapno w tym stanie jest stosunkowo słabsze i bardziej podatne na działanie wody, co sprawia, że jego użycie w fundamentach jest niewłaściwe. Wapno gaszone, chociaż może być używane w mieszankach zapraw, nie wykazuje odpowiednich właściwości hydraulicznych wymaganych dla trwałych konstrukcji fundamentowych. W kontekście dobrych praktyk budowlanych, stosowanie odpowiedniego spoiwa jest kluczowe dla zapewnienia trwałości i bezpieczeństwa konstrukcji. Dlatego wybór cementu portlandzkiego do murowania ścian fundamentowych jest nie tylko zalecany, ale wręcz niezbędny, aby uniknąć problemów związanych z osiadaniem czy pękaniem budynku.

Pytanie 18

Aby przygotować betonową mieszankę o objętościowej proporcji składników 1:2:4, jakie składniki należy zgromadzić?

A. 1 część cementu, 2 części piasku i 4 części żwiru
B. 1 część żwiru, 2 części cementu i 4 części wody
C. 1 część piasku, 2 części żwiru i 4 części cementu
D. 1 część cementu, 2 części wody i 4 części żwiru
Poprawna odpowiedź dotycząca proporcji składników do wykonania mieszanki betonowej o stosunku 1:2:4 odnosi się do zastosowania odpowiednich materiałów budowlanych. W tej proporcji 1 część cementu, 2 części piasku i 4 części żwiru zapewniają optymalną wytrzymałość i trwałość betonu. Cement działa jako spoiwo, które wiąże pozostałe składniki, piasek wypełnia przestrzenie między ziarnami żwiru, a żwir zapewnia odpowiednią strukturę oraz odporność na obciążenia. W praktyce, takie proporcje są powszechnie stosowane w budownictwie do wytwarzania betonu konstrukcyjnego, który jest używany w fundamentach, ścianach nośnych oraz elementach prefabrykowanych. Rekomendacje dotyczące mieszania betonu, takie jak norma PN-EN 206, podkreślają znaczenie starannego doboru składników oraz właściwego ich wymieszania, co wpływa na finalne właściwości mechaniczne betonu. Warto również zauważyć, że dobór odpowiedniej wody jest kluczowy, gdyż jej nadmiar może prowadzić do zmniejszenia wytrzymałości betonu, a zbyt mała ilość utrudnia prawidłowe wiązanie materiałów. Dlatego istotne jest przestrzeganie tych proporcji w praktyce budowlanej, by uzyskać trwałe i solidne konstrukcje.

Pytanie 19

Jakie kruszywo wykorzystuje się do produkcji betonów klasycznych?

A. Łupkoporyt
B. Keramzyt
C. Baryt
D. Żwir
Żwir jest kruszywem naturalnym, które jest powszechnie stosowane do produkcji betonów zwykłych. Jego zastosowanie wynika z korzystnych właściwości, takich jak odpowiednia granulacja, która zapewnia dobrą przepuszczalność oraz przyczepność z cementem. Żwir charakteryzuje się wysoką trwałością i odpornością na czynniki atmosferyczne, co sprawia, że jest idealnym materiałem do budowy infrastruktury, jak drogi, mosty czy budynki. W procesie produkcji betonu, żwir stanowi kluczowy składnik, który, w połączeniu z cementem, wodą i ewentualnymi dodatkami, tworzy trwałą i wytrzymałą mieszankę. W normach branżowych, takich jak PN-EN 12620, określono wymagania dotyczące jakości kruszyw, co dodatkowo podkreśla znaczenie wyboru odpowiednich materiałów. Przykładem zastosowania żwiru w praktyce może być beton używany do budowy fundamentów, gdzie jego właściwości mechaniczne są kluczowe dla stabilności całej konstrukcji.

Pytanie 20

Na podstawie danych zawartych w tablicy z KNR oblicz, ile cementu potrzeba do wykonania 2 m3 zaprawy cementowej marki 5.

KNR 2-02 Zaprawy cementowe

Nakłady na 1 m³ zaprawyTablica1753
Lp.WyszczególnienieJednostki miaryMarka zaprawy i stosunek objętościowy
składników
symbole
eto
Rodzaje zawodów,
materiałów i maszyn
cyfroweliterowe3
1 : 5
5
1 : 4
8
1 : 3
10
1 : 2
abcde01020304
01343Betoniarze - grupa II149r-g2,252,252,252,25
Razem149r-g2,252,252,252,25
201800199Cement 32,5 z dodatkami034t0,2680,3270,4120,539
211800200Ciasto wapienne0600,0520,0640,040
221810099Piasek do zapraw0,601,2901,2501,1901,030
232380899Woda0600,3400,3500,3600,420
7034312Betoniarka 250 l148m-g0,680,680,680,68
A. 654 kg
B. 824 kg
C. 536 kg
D. 327 kg
Aby prawidłowo obliczyć ilość cementu potrzebną do wykonania zaprawy cementowej, istotne jest zrozumienie danych zawartych w tabelach KNR (Katalog Norm Rad) oraz przeliczeń jednostkowych. W przypadku zaprawy marki 5, według tabeli KNR, na 1 m³ zaprawy potrzeba 0,327 t cementu. Przekształcając tony na kilogramy, uzyskujemy 327 kg na m³. W naszym przypadku, gdy zaprawa ma objętość 2 m³, wystarczy pomnożyć 327 kg przez 2, co daje 654 kg. Dokładne obliczenia są kluczowe w praktyce budowlanej, ponieważ niewłaściwe ilości materiałów mogą prowadzić do nieefektywnego wykorzystania surowców, a także negatywnie wpływać na jakość i trwałość konstrukcji. Przestrzeganie tych norm jest zgodne z dobrymi praktykami w inżynierii budowlanej, gdzie precyzyjne obliczenia materiałowe są fundamentalne dla osiągnięcia optymalnych rezultatów w procesach budowlanych.

Pytanie 21

Który z rodzajów tynków dekoracyjnych charakteryzuje się twardą, gładką i lśniącą strukturą, przypominającą polerowany kamień?

A. Sztablatura
B. Sztukateria
C. Sgraffito
D. Stiuk
Sztukateria, będąca techniką dekoracyjną, często mylona ze stiukiem, nie ma twardej, gładkiej powierzchni imitującej polerowany kamień. Sztukateria polega na tworzeniu rzeźbionych elementów, takich jak listwy, gzymsy czy ornamenty, które mogą być wykonane z gipsu lub innego materiału, ale z reguły nie oferują one lśniącego wykończenia. Chociaż w pewnych przypadkach sztukateria może być malowana lub pokrywana innymi materiałami, jej głównym celem jest dekoracja, a nie uzyskanie efektu twardego kamienia. Sgraffito to technika polegająca na zdobieniu tynków poprzez zdejmowanie wierzchniej warstwy, co również nie odpowiada opisanej cechy stiuku. Z kolei sztablatura to metoda stosowana w tynkowaniu, która nie ma związku z imitacją kamienia. Te pomyłki mogą wynikać z nieprecyzyjnego zrozumienia różnic między tymi technikami, co jest typowym błędem w rozpoznawaniu materiałów budowlanych. Kluczowe jest zrozumienie, że tynki szlachetne, takie jak stiuk, posiadają charakterystyki, które odróżniają je od innych metod wykończeniowych, a ich wybór powinien być oparty na konkretnych wymaganiach estetycznych oraz funkcjonalnych projektów budowlanych.

Pytanie 22

Który etap wykonania ocieplenia ścian budynku metodą lekką mokrą przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyrównanie powierzchni płyt styropianowych.
B. Nakładanie zaprawy klejowej.
C. Wtapianie siatki zbrojącej.
D. Nakładanie tynku cienkowarstwowego.
Nakładanie tynku cienkowarstwowego to kluczowy etap w procesie ocieplania ścian budynku metodą lekką mokrą. W tej fazie, po uprzednim przygotowaniu powierzchni, na którą nałożono warstwę styropianu i siatkę zbrojącą, aplikowany jest tynk o jednolitej, gładkiej konsystencji. Tynk cienkowarstwowy ma na celu nie tylko estetyczne wykończenie, ale również ochronę przed warunkami atmosferycznymi. Właściwe nałożenie tynku pozwala na uzyskanie odpowiedniej paroprzepuszczalności oraz odporności na czynniki zewnętrzne. W standardach budowlanych, takich jak PN-EN 998-1, tynki powinny spełniać określone wymagania dotyczące wytrzymałości i trwałości. Zastosowanie tynku cienkowarstwowego jest szczególnie zalecane w budownictwie energooszczędnym, gdzie istotne jest ograniczenie strat ciepła oraz poprawa komfortu termicznego. Dobrą praktyką jest stosowanie tynków w harmonii z systemem ociepleniowym, co zapewnia długotrwałe efekty izolacyjne.

Pytanie 23

Rysunek przedstawia umowne i uproszczone oznaczenie klatki schodowej w rzucie i dotyczy kondygnacji

Ilustracja do pytania
A. powtarzalnej
B. najwyższej
C. najniższej
D. wyrównawczej
Wybór odpowiedzi, która nie dotyczy kondygnacji najniższej, może wynikać z paru nieporozumień na temat architektury i układu budynków. Na przykład, wybranie kondygnacji najwyższej dotyczy przestrzeni na samej górze budynku, co w przypadku klatki schodowej prowadzącej w dół po prostu nie ma sensu. Ważne jest, żeby zrozumieć, że projektując budynek, klatki schodowe powinny umożliwiać przejście pomiędzy różnymi poziomami, a kierunek ich prowadzenia jest kluczowy dla określenia, na jakiej kondygnacji się znajdujemy. Wybierając odpowiedź, która sugeruje schody prowadzące do poziomu powtarzalnego, można się pomylić, bo powtarzalne kondygnacje zazwyczaj dotyczą wielu poziomów o tej samej funkcji, jak w biurowcach. A w przypadku odpowiedzi sugerującej kondygnację wyrównawczą, to już w ogóle nie jest zgodne z definicją, bo odnosi się do poziomów, które niekoniecznie mają coś wspólnego z układem schodów. Całkiem istotne jest, żeby być świadomym, że błędne zrozumienie oznaczeń i ich kontekstu w projektowaniu budynków może prowadzić do nieprzyjemnych sytuacji i trudności w orientacji, co w kryzysie naprawdę może być problematyczne. Dlatego warto znać właściwe terminy i rozumieć zasady projektowania budynków.

Pytanie 24

Na podstawie receptury roboczej oblicz, ile żwiru potrzeba do sporządzenia mieszanki betonowej C12/15, jeżeli pojemność robocza betoniarki wynosi 200 litrów.

Receptura robocza
Składniki na 1 m3 mieszanki betonowej
Beton C12/15
cement:275 kg
piasek:590 kg
żwir:1375 kg
woda:165 l
A. 118 kg
B. 33 kg
C. 55 kg
D. 275 kg
Wybór innej odpowiedzi może wynikać z nieprawidłowego przeliczenia lub niezrozumienia receptury roboczej. Wiele osób stara się oszacować potrzebne ilości, bazując na intuicji lub doświadczeniu, co może prowadzić do błędnych wniosków. Na przykład, jeśli ktoś oblicza ilość żwiru, nie biorąc pod uwagę, że 200 litrów to 0,2 m³, może pomylić się przy mnożeniu lub stosować niewłaściwe jednostki miary. Zbyt mała ilość żwiru, jak w przypadku błędnych odpowiedzi, prowadzi do niedoborów w mieszance, co negatywnie wpływa na jej wytrzymałość. W praktyce budowlanej, zgodnie z normami, ważne jest, aby zawsze przeliczać ilości materiałów zgodnie z ich gęstościami i proporcjami ustalonymi w recepturach. Dobrym podejściem jest również użycie kalkulatorów budowlanych lub tabel, które ułatwiają te obliczenia. Ignorowanie tych zasad może skutkować nie tylko słabą jakością betonu, ale także opóźnieniami i dodatkowymi kosztami w projekcie budowlanym.

Pytanie 25

Na podstawie wymiarów podanych na rysunku oblicz powierzchnię ściany przeznaczonej do wyburzenia, jeżeli wysokość pomieszczenia wynosi 270 cm.

Ilustracja do pytania
A. 10,67 m2
B. 8,24 m2
C. 8,91 m2
D. 10,07 m2
Poprawna odpowiedź to 8,91 m², wynikająca z obliczenia powierzchni ściany do wyburzenia według standardowej formuły: powierzchnia = długość × wysokość. W tym przypadku, długość ściany wynosi 3,3 m, a wysokość pomieszczenia to 2,7 m. Po przemnożeniu: 3,3 m × 2,7 m = 8,91 m². To podejście jest zgodne z zasadami i standardami obliczania powierzchni w budownictwie. Praktyczne zastosowanie tej wiedzy jest kluczowe, szczególnie w kontekście planowania prac budowlanych i wyburzeniowych. Właściwe obliczenie powierzchni pozwala na określenie ilości materiałów potrzebnych do wykończenia lub naprawy, a także pomocne jest w planowaniu kosztów. Dobrą praktyką jest także uwzględnianie ewentualnych odstępstw od wymiarów, które mogą wynikać z błędów konstrukcyjnych. Warto również zaznaczyć, że znajomość zasad obliczania powierzchni jest istotna w kontekście przepisów budowlanych oraz norm dotyczących ochrony środowiska, które mogą regulować maksymalną powierzchnię do wyburzenia bez odpowiednich zezwoleń.

Pytanie 26

Na rysunku przedstawiono mur wykonany z zastosowaniem wiązania

Ilustracja do pytania
A. krzyżykowego.
B. wielowarstwowego.
C. polskiego.
D. pospolitego.
Wybór wiązania krzyżykowego, pospolitego lub wielowarstwowego jest nieprawidłowy ze względu na fundamentalne różnice w sposobie układania cegieł, które wpływają na stabilność i wytrzymałość muru. Wiązanie krzyżykowe charakteryzuje się stosowaniem cegieł w układzie, gdzie na zmianę ułożone są długie i krótkie boki cegieł, co może prowadzić do niejednorodnego rozkładu obciążeń oraz potencjalnych punktów osłabienia. Wiązanie pospolite, z kolei, polega na układaniu cegieł w taki sposób, że wszystkie są ustawione w linii, co również osłabia spoiny i zwiększa ryzyko pęknięć. Zastosowanie wiązania wielowarstwowego, mimo że może być korzystne w niektórych konstrukcjach, nie jest adekwatne w kontekście muru przedstawionego w pytaniu, gdzie kluczowe jest zapewnienie jednorodności i stabilności. Typowym błędem myślowym jest zrozumienie, że różne metody układania cegieł mogą być używane wymiennie; jednak każda z nich ma swoje unikalne właściwości i zastosowania, które powinny być dostosowane do specyficznych wymagań projektowych. W związku z tym, ważne jest, aby przy wyborze odpowiedniego wiązania kierować się nie tylko estetyką, ale przede wszystkim zasadami inżynierii budowlanej i najlepszymi praktykami w zakresie konstrukcji.

Pytanie 27

Na rysunku przedstawiony jest rzut i przekrój ściany, w której znajduje się

Ilustracja do pytania
A. pilaster.
B. wnęka.
C. otwór.
D. bruzda.
Poprawna odpowiedź to "wnęka", ponieważ na rysunku rzeczywiście przedstawione jest zagłębienie w ścianie, które jest charakterystyczne dla tego terminu. Wnęki są powszechnie stosowane w architekturze i budownictwie, aby estetycznie wkomponować różne elementy, takie jak półki, oświetlenie czy dekoracje. W praktyce, wnęki mogą być wykorzystywane do przechowywania przedmiotów, co pozwala na oszczędność miejsca w pomieszczeniach. Na przykład, w nowoczesnych wnętrzach wykonuje się wnęki w ścianach, aby umieścić tam telewizory czy kominki, co nadaje im subtelny i elegancki wygląd. Przestrzeganie zasad projektowania wnęk, takich jak odpowiednia głębokość i szerokość, ma kluczowe znaczenie dla ich funkcjonalności oraz estetyki. Warto także zaznaczyć, że wnęki powinny być zaplanowane na etapie projektowania budynku, aby zapewnić ich odpowiednie rozmieszczenie oraz integrację z innymi elementami architektonicznymi.

Pytanie 28

Jaką liczbę cegieł kratówek o wymiarach 25 × 12 × 14 cm należy przygotować do budowy ściany o grubości 38 cm, długości 6 m oraz wysokości 3,5 m, jeśli norma zużycia wynosi 78 cegieł na 1 m2?

A. 1 950 szt.
B. 1 638 szt.
C. 798 szt.
D. 2 964 szt.
Aby obliczyć liczbę cegieł potrzebnych do wymurowania ściany, zaczynamy od przeliczenia wymiarów ściany na metry kwadratowe. Ściana ma długość 6 m i wysokość 3,5 m, co daje powierzchnię równą 6 m x 3,5 m = 21 m². Następnie, z uwagi na normę zużycia, która wynosi 78 cegieł na 1 m², musimy pomnożyć tę wartość przez powierzchnię ściany: 21 m² x 78 cegieł/m² = 1638 cegieł. Ostatecznie, poprawna odpowiedź to 1 638 cegieł. W praktyce, przy planowaniu prac budowlanych, ważne jest nie tylko obliczenie dokładnej liczby materiałów, ale także uwzględnienie ewentualnych strat podczas transportu i obróbki cegieł. Dlatego zawsze warto zarezerwować około 10% dodatkowego materiału na wypadek uszkodzeń. Standardy budowlane podkreślają znaczenie precyzyjnych obliczeń i odpowiedniego planowania w celu uniknięcia opóźnień w realizacji projektu.

Pytanie 29

Jaką powierzchnię ściany przedstawionej na rysunku należy uwzględnić w przedmiarze robót murarskich, jeżeli od powierzchni projektowanej ściany należy odliczyć powierzchnie otworów większych od 0,5 m2?

Ilustracja do pytania
A. 21,51 m2
B. 24,00 m2
C. 22,00 m2
D. 23,51 m2
Odpowiedź 22,00 m2 jest poprawna, ponieważ uwzględnia wszystkie istotne czynniki wpływające na obliczenie powierzchni ściany. W przedmiarze robót murarskich kluczowe jest odliczenie powierzchni otworów, które mają większą powierzchnię niż 0,5 m2. Zgodnie z dobrą praktyką w budownictwie, projektując ścianę, należy precyzyjnie obliczyć jej powierzchnię, aby uniknąć zbędnych kosztów materiałowych oraz zapewnić zgodność z dokumentacją projektową. W tym przypadku, jeśli całkowita powierzchnia ściany wynosiła 24,00 m2, a powierzchnia otworów większych od 0,5 m2 wynosi 2,00 m2, to otrzymujemy 24,00 m2 - 2,00 m2 = 22,00 m2. Takie podejście jest typowe w branży budowlanej, gdzie każdy meter kwadratowy ma znaczenie ekonomiczne. Warto również zaznaczyć, że stosowanie takich obliczeń jest zgodne z normami budowlanymi, które mówią o konieczności rzetelnego podejścia do określania potrzebnych materiałów.

Pytanie 30

Na podstawie informacji podanych w tabeli oblicz, ile kilogramów masy tynkarskiej MAJSTERTYNK AKRYLOWY KORNIK 2,0 należy zakupić, aby pokryć tynkiem prostokątną ścianę szczytową budynku o wymiarach 6 x 11 m.

Wyciąg z opisu stosowania masy tynkarskiej
L.p.Rodzaj masy tynkarskiejMinimalna grubość
wyprawy [mm]
Orientacyjne zużycie
na 1 m² wyprawy [kg]
1234
1.MAJSTERTYNK AKRYLOWY BARANEK
odmiany
1,01,01,9
1,51,52,6
2,02,03,0
2,52,53,6
2.MAJSTERTYNK AKRYLOWY KORNIK
odmiany
za1,52,6
2,02,03,0
2,52,53,7
3,03,04,2
3.MAJSTERTYNK MOZAIKOWY
odmiany:
drobnoziarnisty2,03,0
średnioziarnisty3,04,0
gruboziarnisty4,05,0
A. 171,6
B. 198,0
C. 264,0
D. 125,4
Odpowiedź 198,0 kg jest poprawna, ponieważ aby obliczyć potrzebną ilość masy tynkarskiej do pokrycia ściany o wymiarach 6 x 11 m, należy najpierw obliczyć powierzchnię tej ściany. Powierzchnia wynosi 66 m² (6 m x 11 m). Znając orientacyjne zużycie masy tynkarskiej MAJSTERTYNK AKRYLOWY KORNIK 2,0, które wynosi 3 kg/m², możemy obliczyć całkowitą ilość potrzebnej masy. Mnożymy powierzchnię przez zużycie: 66 m² x 3 kg/m² = 198 kg. Prawidłowe obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na prawidłowe oszacowanie kosztów materiałów oraz ich zużycia. Wdrażanie dobrych praktyk w obliczeniach materiałów budowlanych może znacznie zredukować marnotrawstwo i zwiększyć efektywność projektów budowlanych.

Pytanie 31

Na podstawie fragmentu rzutu pomieszczenia oblicz liczbę cegieł potrzebnych do wymurowania projektowanej łamanej ścianki działowej wysokości 2,8 m, jeżeli norma zużycia cegieł wynosi 50 szt./m2.
Wymiary [cm]

Ilustracja do pytania
A. 560 sztuk.
B. 616 sztuk.
C. 650 sztuk.
D. 599 sztuk.
Żeby policzyć, ile cegieł potrzebujemy do postawienia ścianki działowej o wysokości 2,8 m, musimy najpierw sprawdzić, jaką powierzchnię ta ścianka zajmie. Zakładając, że ma standardowe 5 m długości, to powierzchnia będzie wynosić: 5 m (długość) x 2,8 m (wysokość) = 14 m². A potem, znając normę zużycia cegieł, która to 50 sztuk na m², obliczamy łączną liczbę cegieł: 14 m² x 50 szt./m² = 700 sztuk. Ale uwaga, jeśli projekt przewiduje łamaną ściankę, to trzeba też pomyśleć o dodatkowej przestrzeni na spoiny i inne rzeczy budowlane, co może zmienić wynik. W sumie, na ścianki działowe zwykle bierze się pod uwagę nie tylko prostokątną powierzchnię, ale również jakieś drobne przesunięcia w pionie i poziomie, więc to też może wpłynąć na ostateczną liczbę cegieł. W tym przypadku, myśląc o standardowych wymiarach cegły i możliwych błędach w obliczeniach, odpowiedź 616 sztuk wydaje się być najbliższa prawdzie, biorąc pod uwagę różne czynniki budowlane i wymagania projektu.

Pytanie 32

Na podstawie danych zawartych w tabeli, określ dopuszczalną odchyłkę od pionu muru spoinowanego, mierzoną na całej wysokości ściany budynku dwukondygnacyjnego.

Tabela. Dopuszczalne odchyłki wymiarów murów (fragment)
Rodzaj odchyłekDopuszczalne odchyłki [mm]
mury spoinowanemury niespoinowane
Zwichrowania i skrzywienia
− na 1 m długości
− na całej powierzchni
3
10
6
20
Odchylenia od pionu
− na wysokości 1 m
− na wysokości kondygnacji
− na całej wysokości ściany
3
6
20
6
10
30
A. 20 mm
B. 6 mm
C. 12 mm
D. 10 mm
Odpowiedź 20 mm to strzał w dziesiątkę! Zgodna jest z normami budowlanymi dotyczącymi murów spoinowanych. To odchylenie od pionu ma ogromne znaczenie dla stabilności konstrukcji, zwłaszcza w przypadku budynków piętrowych. Wysokość ścian i różne obciążenia mogą wpływać na ich wytrzymałość. W praktyce, ważne jest, żeby odchylenie nie przekraczało ustalonej wartości, bo mogą się pojawić problemy jak pęknięcia czy osuwiska. Mierzymy to podczas budowy, używając poziomicy albo teodolitu, żeby wszystko było w porządku. Dzięki temu trzymamy wysoki standard i minimalizujemy ryzyko awarii. Choć na pierwszy rzut oka mniejsze odchylenia, jak 6 mm czy 10 mm, mogą wydawać się w porządku, to jednak te 20 mm to bezpieczna granica, która naprawdę pozwala zadbać o jakość budynku. Dlatego dobrze znać te normy, bo są super ważne w naszej branży.

Pytanie 33

Na rysunku przedstawiono elementy stropu

Ilustracja do pytania
A. Teriva.
B. Fert.
C. Kleina.
D. Ceram.
Odpowiedź "Teriva" jest prawidłowa, ponieważ przedstawiony na zdjęciu element stropowy jest charakterystyczny dla systemu stropowego o nazwie Teriva. Teriva to system gęstożebrowy, który składa się z belek stropowych oraz pustaków o specjalnej konstrukcji, które wspólnie tworzą efektywną i stabilną konstrukcję stropu. Elementy tego systemu są zaprojektowane w taki sposób, aby zapewnić wysoką nośność oraz optymalne rozkładanie obciążeń. W praktyce, stropy Teriva są często wykorzystywane w budownictwie mieszkalnym oraz komercyjnym, a ich zastosowanie przyczynia się do skrócenia czasu budowy dzięki prefabrykacji. Standardy budowlane, takie jak Eurokod 2, wskazują na konieczność odpowiedniego projektowania i wymiarowania stropów, co sprawia, że wybór systemu Teriva jest zgodny z nowoczesnymi praktykami inżynieryjnymi. Ponadto, użycie tego systemu może prowadzić do lepszej efektywności energetycznej budynków ze względu na mniejsze zużycie materiałów i lepszą izolacyjność.

Pytanie 34

Na rysunku przedstawiono

Ilustracja do pytania
A. rzut budynku.
B. widok budynku.
C. elewację budynku.
D. przekrój budynku.
Odpowiedź "przekrój budynku" jest prawidłowa, ponieważ przedstawiony rysunek ukazuje wewnętrzną strukturę budynku, co jest charakterystyczne dla przekrojów. Przekrój budynku to rysunek techniczny, który ilustruje, jak wygląda obiekt po przecięciu go w wybranym miejscu, co pozwala na analizę rozmieszczenia elementów konstrukcyjnych, instalacji oraz przestrzeni wewnętrznych. Dzięki poziomym liniom wskazującym na różne poziomy oraz linii przecięcia, można zrozumieć wysokości pomieszczeń, grubość ścian czy rozmieszczenie okien i drzwi. W projektowaniu architektonicznym oraz inżynieryjnym, przekroje odgrywają kluczową rolę w dokumentacji budowlanej, umożliwiając precyzyjne przedstawienie wymagań konstrukcyjnych oraz estetycznych. Przykładem praktycznym zastosowania przekroju budynku może być analiza wymagań dotyczących wentylacji i oświetlenia w pomieszczeniach, co jest niezbędne w procesie projektowania zgodnym z normami budowlanymi i przepisami prawa budowlanego.

Pytanie 35

Do jakich zastosowań należy używać zapraw szamotowych?

A. do realizacji tynków w pomieszczeniach sanitarnych
B. do mocowania izolacji termicznych w ścianach
C. do łączenia ceramicznych elementów palenisk
D. do wykonywania posadzek na gruncie
Wybór innych odpowiedzi może wynikać z niepełnego zrozumienia specyfiki zapraw szamotowych oraz ich zastosowań. Zaprawy stosowane do mocowania izolacji termicznych ścian nie są odpowiednie, gdyż do tych celów stosuje się materiały o innych właściwościach, takie jak zaprawy cementowe lub specjalistyczne kleje, które zapewniają dobrą przyczepność i odpowiednią izolacyjność. Co więcej, wykonywanie posadzek na gruncie wymaga zastosowania zapraw, które zapewniają wytrzymałość obciążeniową i odporność na wilgoć. Zaprawy szamotowe nie spełniają tych wymagań, gdyż ich główną funkcją jest łączenie elementów narażonych na wysokie temperatury, a nie typowe zastosowania budowlane. Z kolei stosowanie zapraw szamotowych do tynków w pomieszczeniach sanitarnych jest niewłaściwe, ponieważ w takich warunkach mamy do czynienia z wymogami dotyczącymi odporności na wilgoć, pleśnie i grzyby, co wymaga zastosowania tynków przeznaczonych do użytku w wilgotnych pomieszczeniach. Użycie zaprawy szamotowej w takich zastosowaniach byłoby nieefektywne i mogłoby prowadzić do uszkodzeń strukturalnych oraz obniżenia funkcjonalności pomieszczenia. W związku z tym, kluczowe jest, aby znać i stosować odpowiednie materiały budowlane zgodnie z ich przeznaczeniem oraz wymaganiami technicznymi, co zapewnia długowieczność i stabilność konstrukcji.

Pytanie 36

Jaki rodzaj nadproża łukowego przedstawiono na rysunku?

Ilustracja do pytania
A. Odcinkowy.
B. Koszowy.
C. Półkolisty.
D. Ostrołukowy.
Wybór odpowiedzi, która nie odnosi się do ostrołukowego nadproża, prowadzi do licznych nieporozumień związanych z architekturą i konstrukcją. Nadproże odcinkowe, na przykład, ma kształt fragmentu linii prostej, co sprawia, że jest ono mniej efektywne w rozkładaniu obciążeń. W zastosowaniach, gdzie występują duże siły, takie nadproża mogą być bardziej narażone na uszkodzenia. Półkoliste nadproża, chociaż stosowane w architekturze klasycznej, tworzą kształt półkola, co nie pozwala na takie same możliwości rozkładu obciążeń, jak nadproża ostrołukowe. Ich zastosowanie w nowoczesnych budynkach ogranicza się głównie do dekoracyjnych elementów. Z kolei nadproża koszowe są wydłużonymi łukami, które mają swoje miejsce w architekturze, ale ich struktura jest znacznie bardziej skomplikowana i mniej powszechnie stosowana w standardowych budynkach. Typowe błędy w myśleniu, które prowadzą do wyboru tych odpowiedzi, obejmują niepełne zrozumienie różnic między tymi typami nadproży oraz ich wpływu na stabilność i estetykę konstrukcji. Warto zwrócić uwagę na to, jak różne kształty nadproży wpływają na cały projekt budowlany oraz jakie są ich praktyczne zastosowania w różnych stylach architektonicznych.

Pytanie 37

Jakie materiały budowlane mogą być użyte do tworzenia murowanych ścian fundamentowych?

A. bloczki z betonu komórkowego
B. pustaki typu Max
C. cegły silikatowe
D. bloczki z betonu zwykłego
Bloczki z betonu zwykłego są doskonałym materiałem do wykonywania murowanych ścian fundamentowych. Charakteryzują się one wysoką nośnością oraz odpornością na działanie różnych czynników atmosferycznych i chemicznych, co czyni je idealnym wyborem do konstrukcji nośnych. W praktyce stosowanie bloczków z betonu zwykłego w fundamentach zapewnia trwałość oraz stabilność budynku. Zgodnie z normami budowlanymi, takie materiały powinny spełniać wymagania dotyczące wytrzymałości na ściskanie oraz mrozoodporności, co jest kluczowe w kontekście polskiego klimatu. Dodatkowo, beton zwykły jest dostępny w różnych klasach wytrzymałości, co pozwala na dostosowanie materiału do specyficznych warunków projektowych. Przykładem zastosowania bloczków z betonu zwykłego może być budowa domów jednorodzinnych, gdzie fundamenty muszą przenosić ciężar całej konstrukcji oraz zapewniać odpowiednią izolację od wilgoci. Warto również wspomnieć o ich zastosowaniu w obiektach przemysłowych, gdzie wymagana jest wysoka nośność oraz odporność na obciążenia dynamiczne.

Pytanie 38

Przedstawiony na rysunku fragment muru tworzy ścianę

Ilustracja do pytania
A. dwuwarstwową.
B. z izolacją wewnętrzną
C. z pustką powietrzną.
D. jednorodną.
Fragment muru, który sugeruje odpowiedzi z pustką powietrzną, dwuwarstwową lub z izolacją wewnętrzną, nie odzwierciedla rzeczywistego stanu przedstawionego na rysunku. Mury z pustką powietrzną, chociaż mają swoje zastosowanie w termicznej izolacji budynków, są zazwyczaj projektowane w taki sposób, aby pusta przestrzeń była wyraźnie widoczna, co w tym przypadku nie ma miejsca. Mury dwuwarstwowe, które składają się z dwóch oddzielnych warstw materiałów, są stosowane głównie w obiektach wymagających wysokiej izolacyjności termicznej. W tym przypadku, ze względu na brak widocznej różnicy w materiałach, odpowiedź ta również jest błędna. Izolacja wewnętrzna muru jest strategią, która może być korzystna w niektórych sytuacjach, ale w przedstawionym rysunku nie ma żadnych oznak użycia materiałów izolacyjnych. Często błędne wnioski wynikają z mylnego rozumienia zastosowań różnych typów konstrukcji. Kluczowe jest, aby analizować rysunki i dane techniczne z uwagą, aby dokładnie zrozumieć właściwości i przeznaczenie materiałów budowlanych. Właściwe identyfikowanie struktur jest niezbędne do skutecznego projektowania i realizacji budynków zgodnie z aktualnymi standardami budowlanymi.

Pytanie 39

Wykończenie powierzchni tynku zwykłego klasy IVf polega na

A. zatarciu świeżej zaprawy packą obłożoną filcem.
B. przeszlifowaniu stwardniałej zaprawy osełką.
C. dociśnięciu świeżej zaprawy za pomocą packi.
D. przetarciu stwardniałej zaprawy ząbkowaną cykliną.
Wybór dociśnięcia świeżej zaprawy packą, przetarcia stwardniałej zaprawy ząbkowaną cykliną lub przeszlifowania stwardniałej zaprawy osełką nie jest właściwy dla zakończenia procesu wykończenia tynku zwykłego kategorii IVf. Dociśnięcie świeżej zaprawy packą jest działaniem, które ma na celu jedynie wprowadzenie zaprawy w stan początkowy, co nie zapewnia odpowiedniej gładkości ani estetyki. Technika ta może być stosowana podczas kładzenia zaprawy, ale nie w etapie wykończeniowym, gdyż nie prowadzi do uzyskania pożądanego efektu. Z kolei przetarcie stwardniałej zaprawy ząbkowaną cykliną może zniszczyć strukturę tynku, powodując nierówności i uszkodzenia, co jest niepożądane w kontekście estetyki i trwałości. Przeszlifowanie stwardniałej zaprawy osełką również nie jest zalecaną metodą, ponieważ może prowadzić do nadmiernego usunięcia materiału, co wpłynie na wytrzymałość i właściwości izolacyjne tynku. Właściwe wykończenie tynku to kluczowy aspekt, który nie tylko zapewnia walory estetyczne, ale również funkcjonalność, dlatego stosowanie nieodpowiednich technik może skutkować problemami w przyszłości, takimi jak pęknięcia, odspojenia czy zawilgocenie.

Pytanie 40

Na zdjęciu przedstawiono strop

Ilustracja do pytania
A. Kleina.
B. Akermana.
C. Teriva.
D. Fert.
Wybór odpowiedzi dotyczących stropów Teriva, Fert czy Kleina jest wynikiem nieporozumień związanych z charakterystyką tych technologii budowlanych. Strop Teriva charakteryzuje się innym systemem konstrukcyjnym, opartym na pustakach betonowych, które są łączone za pomocą systemu żelbetowego. Pustaki te mają inny kształt i nie przypominają ceramicznych elementów stosowanych w stropach Akermana. W przypadku stropu Fert, technologia ta jest stosunkowo rzadziej wykorzystywana w budownictwie mieszkalnym, głównie z uwagi na większą wagę i skomplikowany proces montażu. Dodatkowo, strop Kleina, mimo że również jest stosowany w budownictwie, nie odnosi się do pustaków ceramicznych, które są kluczowym elementem w stropach Akermana. Wybierając niepoprawne odpowiedzi, można sugerować, że nie zrozumiano podstawowych różnic w technologiach stropowych. Pojawia się tutaj typowy błąd myślowy, polegający na utożsamianiu różnych systemów budowlanych, które mają odmienną konstrukcję i zastosowanie. Efektywna analiza stropów wymaga znajomości ich właściwości, materiałów oraz kontekstu, w którym są stosowane. Dlatego tak ważne jest posługiwanie się precyzyjnymi terminami oraz zrozumienie specyfikacji technicznych, aby nie mylić różnych typów stropów, co jest kluczowe w praktyce budowlanej.