Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 09:56
  • Data zakończenia: 7 grudnia 2025 10:20

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie części zamienne są najczęściej wymagane do serwisowania odkurzacza z jednofazowym silnikiem komutatorowym?

A. Termostaty i czujniki temperatury
B. Grzałki oraz spirale grzejne
C. Szczotkotrzymacze oraz szczotki węglowe
D. Przekładnie i skrzynki przekładniowe
Szczotkotrzymacze i szczotki węglowe są kluczowymi elementami w jednofazowych silnikach komutatorowych, które znajdują zastosowanie w większości odkurzaczy. Te części zamienne odpowiedzialne są za przewodzenie prądu do wirnika silnika, co umożliwia jego prawidłowe działanie. W miarę eksploatacji, szczotki węglowe ulegają naturalnemu zużyciu, co jest zjawiskiem oczekiwanym i wynika z tarcia mechanicznego. Regularna kontrola stanu szczotek i ich wymiana jest zatem istotna dla utrzymania efektywności działania odkurzacza. W praktyce, wymiana szczotkotrzymaczy oraz szczotek węglowych jest jednym z najczęściej wykonywanych czynności serwisowych, co potwierdzają zarówno technicy serwisowi, jak i producenci sprzętu. Dobrą praktyką jest stosowanie oryginalnych części zamiennych, co gwarantuje odpowiednią jakość i trwałość. Warto również pamiętać, że niewłaściwe działanie silnika może prowadzić do nadmiernego przegrzewania się, co z kolei może powodować dalsze uszkodzenia, dlatego wymiana tych elementów powinna być stałym punktem serwisowym.

Pytanie 2

Jakie będą konsekwencje podniesienia częstotliwości napięcia zasilającego stojan w trakcie działania trójfazowego silnika indukcyjnego?

A. Nawrót wirnika silnika
B. Wzrost prędkości obrotowej wirnika silnika
C. Spadek prędkości obrotowej wirnika silnika
D. Całkowite zniszczenie wirnika silnika
Zwiększenie częstotliwości napięcia zasilania stojana trójfazowego silnika indukcyjnego prowadzi do podwyższenia prędkości obrotowej wirnika zgodnie z zasadą synchronizacji. W silnikach indukcyjnych prędkość obrotowa wirnika jest ściśle związana z częstotliwością zasilania, co wynika z relacji: n = 120 * f / p, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Zwiększenie częstotliwości powoduje, że wirnik osiąga wyższą prędkość, co ma zastosowanie w różnych procesach przemysłowych, gdzie wymagana jest regulacja prędkości napędu, na przykład w systemach transportowych czy w automatyce przemysłowej. W praktyce możemy wykorzystać falowniki, które umożliwiają precyzyjne sterowanie częstotliwością, a tym samym prędkością obrotową silnika, co optymalizuje zużycie energii i zwiększa efektywność procesów. Warto również zauważyć, że zgodnie z normami IEC 60034, projektowanie systemów napędowych powinno uwzględniać odpowiednie parametry zasilania, co wpływa na trwałość i wydajność silników."

Pytanie 3

Aby zapewnić dodatkową ochronę, obwody zasilające gniazda wtyczkowe, w których prąd nie przekracza 32 A, powinny być chronione przez wyłącznik RCD o prądzie różnicowym

A. 30 mA
B. 100 mA
C. 1 000 mA
D. 500 mA
Odpowiedź 30 mA jest prawidłowa, ponieważ wyłączniki różnicowoprądowe (RCD) o prądzie różnicowym 30 mA są zalecane do ochrony osób przed porażeniem prądem elektrycznym w instalacjach domowych i komercyjnych. W przypadku gniazd wtyczkowych, które obsługują urządzenia przenośne, istotne jest, aby ochrona była jak najszybsza i najskuteczniejsza, co osiąga się stosując RCD o niskim prądzie różnicowym. Wyłącznik 30 mA działa na zasadzie wykrywania różnicy prądów między przewodami fazowym a neutralnym, co pozwala na natychmiastowe odłączenie zasilania w przypadku wykrycia upływu prądu, który może być wynikiem zwarcia lub kontaktu z ciałem człowieka. Użycie wyłącznika o wyższym prądzie różnicowym, jak 100 mA lub 500 mA, nie zapewnia wystarczającej ochrony i może prowadzić do tragicznych skutków w przypadku porażenia. Przykładowo, w łazienkach, gdzie ryzyko kontaktu z wodą i prądem jest szczególnie wysokie, stosowanie RCD 30 mA jest wręcz obowiązkowe zgodnie z normami bezpieczeństwa elektrycznego.

Pytanie 4

Której z poniższych czynności nie da się zrealizować podczas próbnego uruchamiania zgrzewarki oporowej?

A. Pomiaru czasu poszczególnych etapów zgrzewania: docisku i przerwy
B. Sprawdzenia stanu oraz prawidłowości ustawienia elektrod
C. Pomiaru rezystancji izolacji pomiędzy uzwojeniem pierwotnym transformatora a obudową
D. Sprawdzenia działania przełącznika do zgrzewania pojedynczego oraz ciągłego
Pomiar rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową jest kluczowym krokiem w zapewnieniu bezpieczeństwa i niezawodności zgrzewarki oporowej. Wykonanie tego pomiaru przed rozpoczęciem użytkowania urządzenia pozwala na wykrycie ewentualnych uszkodzeń izolacji, co może prowadzić do zwarć elektrycznych czy porażenia prądem użytkowników. W praktyce, standardowe normy dotyczące bezpieczeństwa elektrycznego, takie jak IEC 60204-1, nakładają na producentów i operatorów obowiązek regularnego sprawdzania stanu izolacji urządzeń. Pomiar rezystancji izolacji można przeprowadzić za pomocą specjalistycznych mierników, które umożliwiają określenie wartości rezystancji w stosunku do wymaganych norm. Przykładowo, minimalna wartość rezystancji izolacji powinna wynosić co najmniej 1 MΩ w urządzeniach przemysłowych, co zapewnia odpowiedni poziom bezpieczeństwa. Regularne kontrole i pomiary takich parametrów, jak rezystancja izolacji, są częścią dobrych praktyk konserwacyjnych, które zapewniają długotrwałą sprawność i bezpieczeństwo urządzenia.

Pytanie 5

Jak często, według podanych w tabeli i zalecanych przez Prawo Budowlane czasookresów, należy wykonywać pomiary okresowe skuteczności ochrony przeciwporażeniowej i rezystancji izolacji instalacji elektrycznych w szkołach?

Zalecana częstotliwość wykonywania okresowych badań sprawności technicznej instalacji elektrycznych
w zależności od warunków środowiskowych
Lp.Rodzaj pomieszczeniaPomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
1O wyziewach żrących1 rok1 rok
2Zagrożonych wybuchem1 rok1 rok
3Otwarta przestrzeń1 rok5 lat
4Wilgotne i bardzo wilgotne
(o wilgotności względnej 75-100%)
1 rok5 lat
5Gorące (temperatura powyżej 35 °C)1 rok5 lat
6Zagrożone pożarem5 lat1 rok
7Stwarzające zagrożenie dla ludzi
(ZL I, ZL II, ZL III)
5 lat1 rok
8Zapylone5 lat5 lat


Pomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
A1 rok1 rok
B1 rok5 lat
C5 lat1 rok
D5 lat5 lat
A. A.
B. D.
C. B.
D. C.
Odpowiedź C jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz standardami technicznymi, pomiary skuteczności ochrony przeciwporażeniowej w szkołach powinny być przeprowadzane co 5 lat, natomiast pomiary rezystancji izolacji wymagają okresowego sprawdzania co rok. Takie podejście ma na celu zapewnienie bezpieczeństwa użytkowników obiektów edukacyjnych, gdzie prawidłowa ochrona przed porażeniem prądem elektrycznym jest kluczowa. Przykładowo, w przypadku awarii systemów ochronnych, konsekwencje mogą być nie tylko materialne, ale przede wszystkim zdrowotne, zagrażające życiu uczniów i personelu. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek, co z kolei przyczynia się do zmniejszenia ryzyka wypadków. Warto zwrócić uwagę na standardy, takie jak PN-IEC 60364, które szczegółowo regulują wymagania dotyczące instalacji elektrycznych oraz ich okresowej konserwacji. Przestrzeganie tych zasad jest nie tylko obowiązkiem, ale również najlepszą praktyką w zarządzaniu bezpieczeństwem elektrycznym w obiektach edukacyjnych.

Pytanie 6

Jak wpłynie na napięcie dolnej strony transformatora wzrost liczby aktywnych zwojów w uzwojeniu górnym, przy niezmienionym napięciu zasilania?

A. Spadnie do zera
B. Zmniejszy się
C. Nie ulegnie zmianie
D. Wzrośnie
Zrozumienie działania transformatora wymaga znajomości podstawowych zasad dotyczących napięcia, zwojów oraz ich wzajemnych relacji. Odpowiedzi sugerujące, że napięcie się nie zmieni, mogą wynikać z błędnego założenia, że liczba zwojów nie ma wpływu na napięcie wyjściowe. Takie podejście ignoruje fundamentalne zasady transformacji energii. W rzeczywistości, napięcie na uzwojeniu dolnym jest bezpośrednio związane z liczbą zwojów w uzwojeniu górnym. Jeśli liczba zwojów w uzwojeniu górnym wzrasta, napięcie na dolnym uzwojeniu musi się obniżyć, aby zachować równowagę w transformatorze. Z kolei twierdzenie, że napięcie wzrośnie, jest oparte na niewłaściwym zrozumieniu mechanizmu działania transformatora, gdzie zwiększenie liczby zwojów w jednym uzwojeniu automatycznie nie prowadzi do wzrostu napięcia w innym. Ostatnia możliwość, że napięcie spadnie do zera, może być wynikiem skrajnego myślenia, które nie uwzględnia faktu, że transformator, przy odpowiednim zasilaniu, zawsze wytwarza pewne napięcie na uzwojeniu dolnym, choć może być ono mniejsze niż w przypadku mniejszej liczby zwojów w uzwojeniu górnym. Dobrą praktyką w analizie układów elektrycznych jest zawsze uwzględnianie proporcji i zależności między poszczególnymi elementami, co pozwala na lepsze zrozumienie działania i przewidywanie konsekwencji zmian w układzie.

Pytanie 7

Która z podanych przyczyn jest odpowiedzialna za ocieranie wirnika o stojan w silniku indukcyjnym klatkowym podczas jego działania?

A. Nagle zwiększone napięcie zasilające
B. Pęknięcie pierścieni zwierających pręty wirnika
C. Nagle zmniejszone napięcie zasilające
D. Poluzowanie tabliczki zaciskowej
Pęknięcie pierścieni zwierających pręty wirnika to istotny problem, który może prowadzić do ocierania wirnika o stojan w silniku indukcyjnym klatkowym. Pierścienie te mają na celu zapewnienie stabilności wirnika podczas jego obrotu, a ich integralność strukturalna jest kluczowa dla poprawnej pracy silnika. Kiedy pierścienie ulegają uszkodzeniu, wirnik może zacząć się przemieszczać zbyt blisko stojana, co doprowadza do tarcia i potencjalnych uszkodzeń obu komponentów. W kontekście praktycznym, regularne przeglądy i testy wizualne silników, w tym kontrola stanu pierścieni zwierających, są kluczowe dla zapobiegania takim awariom. Zgodnie z najlepszymi praktykami w branży, każda usterka powinna być diagnozowana i usuwana natychmiastowo, aby uniknąć dalszych uszkodzeń oraz kosztownych przestojów. Warto również zaznaczyć, że ogólny stan wirnika i jego osprzętu powinien być systematycznie monitorowany na podstawie standardów, takich jak IEC 60034, które szczegółowo określają wymagania dotyczące silników elektrycznych.

Pytanie 8

W instalacjach oświetleniowych w mieszkaniach nie wolno używać opraw oświetleniowych stałych i regulowanych wykonanych w klasie ochronności

A. 0
B. I
C. III
D. II
Odpowiedź 0 jest ok, bo w mieszkaniach nie powinniśmy używać opraw oświetleniowych klasy ochronności 0. One nie mają żadnej dodatkowej izolacji, a to znaczy, że mogą być niebezpieczne, zwłaszcza gdy mówimy o kontaktach z prądem. Klasa ochronności 0 nie chroni przed prądami błądzącymi, a to niesie ryzyko, zwłaszcza tam, gdzie są wilgotne powierzchnie, jak w łazienkach. Z norm PN-IEC 61140 i PN-EN 60598 wynika, że najlepiej używać opraw przynajmniej klasy I, które mają uziemienie i dodatkowe zabezpieczenia. W praktyce, jeśli wybierzemy oprawy klasy I lub II, zwiększamy bezpieczeństwo, co w domowych warunkach jest bardzo ważne. W miejscach, gdzie może być woda, naprawdę warto postawić na oprawy odpowiedniej klasy, żeby zminimalizować ryzyko porażenia prądem.

Pytanie 9

Podczas badania transformatora średniej mocy stwierdzono, że jego temperatura wzrosła ponad normę. Co może być tego przyczyną?

A. Zwarcie międzyzwojowe
B. Uszkodzenie rdzenia
C. Przerwa w uzwojeniu
D. Przeciążenie transformatora
Przeciążenie transformatora często prowadzi do zwiększenia jego temperatury. Gdy transformator jest obciążony powyżej swojej znamionowej mocy, zaczyna generować więcej ciepła niż jest w stanie oddać do otoczenia. Z tego powodu temperatura uzwojeń oraz innych elementów wewnętrznych transformatora wzrasta. Przeciążenia mogą wynikać z niewłaściwego projektowania systemu, nieprawidłowych połączeń, czy też nagłych wzrostów zapotrzebowania na moc. W praktyce, transformator powinien być zawsze eksploatowany w granicach swojej znamionowej mocy, a jego obciążenie monitorowane za pomocą odpowiednich urządzeń pomiarowych. Długotrwałe przeciążenie nie tylko prowadzi do wzrostu temperatury, ale może również skrócić żywotność transformatora, uszkodzić izolację uzwojeń i spowodować awarie całego systemu. Dlatego tak ważne jest stosowanie się do zaleceń producenta oraz regularne przeglądy i konserwacje urządzenia. Dodatkowo, instalacja systemów chłodzenia, takich jak wentylatory lub chłodzenie olejowe, może pomóc w zarządzaniu temperaturą podczas większych obciążeń.

Pytanie 10

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów instalacji?

A. Brak ciągłości przewodu ochronnego
B. Zbyt wysoka rezystancja przewodu uziemiającego
C. Pogorszenie stanu mechanicznego złącz przewodów
D. Brak ciągłości przewodu neutralnego
Prawidłowa odpowiedź to pogorszenie się stanu mechanicznego połączeń przewodów, ponieważ jest to problem, który można łatwo zauważyć podczas oględzin instalacji. Oględziny polegają na wizualnej inspekcji elementów instalacji, co pozwala na identyfikację widocznych uszkodzeń, takich jak korozja, luzne złącza czy pęknięcia. Te defekty mogą prowadzić do zwiększonego oporu elektrycznego, co z kolei wpływa na wydajność i bezpieczeństwo całego systemu. Zgodnie z normą PN-IEC 60364, regularne przeglądy instalacji elektrycznych są kluczowe dla zapewnienia ich bezpieczeństwa i sprawności. Przykładem praktycznym może być inspekcja połączeń w rozdzielnicach, gdzie luźne przewody mogą powodować przegrzewanie się i ryzyko pożaru. Dlatego identyfikacja pogorszenia stanu mechanicznego połączeń jest niezbędna w celu zapobiegania awariom i zapewnienia ciągłości działania instalacji.

Pytanie 11

Zamiana przewodu OWY 2,5 mm2 na YKY 2,5 mm2 w odbiorniku ruchomym doprowadzi do

A. obniżenia obciążalności prądowej
B. zmiany wytrzymałości mechanicznej przewodu
C. wzrostu wytrzymałości mechanicznej przewodu
D. podniesienia obciążalności prądowej
Wybór odpowiedzi dotyczącej zmniejszenia wytrzymałości mechanicznej przewodu YKY 2,5 mm² w porównaniu do OWY 2,5 mm² jest trafny z kilku powodów. Przewody OWY, wykonane z miedzi i zwykle stosowane w instalacjach, charakteryzują się większą elastycznością i odpornością na uszkodzenia mechaniczne. W przeciwieństwie do nich, przewody YKY, chociaż mają lepsze właściwości izolacyjne i są bardziej odporne na działanie chemikaliów, są również sztywniejsze. Zmiana na przewód YKY w zastosowaniach, gdzie przewód jest narażony na ruch, może prowadzić do łatwiejszych uszkodzeń związanych z nadmiernym zginaniem czy przecieraniem. To bardzo ważne w kontekście projektowania instalacji elektrycznych, gdzie przewody często muszą być elastyczne, aby wytrzymać różne ruchy i wibracje. W praktyce, standardy takie jak PN-EN 60228 definiują różne parametry przewodów i ich zastosowań, co podkreśla znaczenie wyboru odpowiedniego typu w zależności od środowiska operacyjnego. Dlatego w kontekście zastosowania przewodów w instalacjach ruchomych, zmiana na YKY może nie być optymalnym rozwiązaniem.

Pytanie 12

Podczas pracy młotowiertarki udarowej zaobserwowano intensywne iskrzenie na komutatorze. Co należy zrobić, aby uniknąć uszkodzenia narzędzia?

A. Należy zatrzymać pracę i dokręcić połączenia kabli wewnątrz obudowy
B. Trzeba wstrzymać pracę i wymienić łącznik zasilający
C. Po zakończeniu pracy należy skontrolować połączenie uzwojenia twornika z uzwojeniem wzbudzenia
D. Wstrzymać pracę i wymienić szczotki
Wymiana szczotek w młotowiertarce udarowej jest kluczowym krokiem, gdy zauważamy nadmierne iskrzenie na komutatorze. Iskrzenie to może być wynikiem zużycia szczotek, które są odpowiedzialne za przewodzenie prądu do wirnika silnika. W miarę eksploatacji, szczotki ulegają ścieraniu, co prowadzi do zwiększenia oporu elektrycznego, a w konsekwencji do iskrzenia. Wymiana szczotek powinna być przeprowadzana zgodnie z zaleceniami producenta, co często wiąże się z regularnymi inspekcjami technicznymi, aby zapobiec poważniejszym uszkodzeniom narzędzia. Przykładowo, w przypadku firmy produkującej młotowiertarki, regularne serwisowanie i monitorowanie stanu szczotek mogą znacząco wydłużyć żywotność narzędzia oraz zapewnić jego optymalne działanie. Praktyka ta nie tylko przyczynia się do bezpieczeństwa użytkownika, ale także utrzymuje wysoką wydajność pracy, co jest niezmiernie ważne w środowisku budowlanym czy remontowym. W ten sposób można uniknąć kosztownych napraw oraz przedłużyć okres użytkowania urządzenia.

Pytanie 13

Jakim przewodem powinno się przeprowadzić instalację oświetlenia natynkowego na uchwytach w piwnicy budynku wielorodzinnego?

A. LgY
B. DYd
C. YDY
D. YDYt
Odpowiedź YDY jest prawidłowa, ponieważ przewód YDY to przewód jednożyłowy, który jest odpowiedni do instalacji oświetleniowych w obiektach budowlanych, w tym w piwnicach. Charakteryzuje się on trwałą izolacją z PVC, co zapewnia odporność na wilgoć oraz różnorodne chemikalia, które mogą występować w piwnicach. Przewód YDY jest elastyczny, co ułatwia jego montaż na uchwytach, a także jest zgodny z obowiązującymi normami, co czyni go odpowiednim do tego typu zastosowań. W praktyce, podczas montażu instalacji oświetleniowej w piwnicy, ważne jest, aby przewody były dobrze zabezpieczone przed uszkodzeniami mechanicznymi i wilgocią, co przewód YDY spełnia. Ponadto, ze względu na swoje właściwości, przewód YDY jest szeroko stosowany w różnych instalacjach elektrycznych, takich jak zasilanie oświetlenia w pomieszczeniach mieszkalnych oraz użytkowych. Zgodnie z normą PN-EN 60502-1, przewody te mogą być stosowane w instalacjach w pomieszczeniach narażonych na działanie wody, co podkreśla ich przydatność w kontekście instalacji w piwnicach.

Pytanie 14

Jaki parametr transformatora zmieni się, gdy podczas jego przezwajania w uzwojeniu wtórnym użyto drutu nawojowego o mniejszej średnicy?

A. Straty w uzwojeniu
B. Straty w rdzeniu
C. Przekładnia napięciowa
D. Przekładnia zwojowa
Wybór odpowiedzi dotyczącej strat w uzwojeniu jest słuszny, ponieważ zastosowanie drutu nawojowego o mniejszej średnicy w uzwojeniu wtórnym transformatora prowadzi do zwiększenia oporu elektrycznego tego uzwojenia. Mniejsza średnica drutu przekłada się na większą rezystancję, co w konsekwencji powoduje większe straty energii w postaci ciepła. Zgodnie z zasadą Joule'a, straty te są proporcjonalne do kwadratu prądu oraz oporu (P=I²R). W praktyce, większe straty w uzwojeniu mogą prowadzić do obniżenia efektywności transformatora, a w skrajnych przypadkach do przegrzewania się uzwojeń, co negatywnie wpływa na jego trwałość i bezpieczeństwo eksploatacji. Ważne jest, aby projektując uzwojenia transformatora, stosować materiały o odpowiednich parametrach, które zminimalizują straty energii, co jest zgodne z najlepszymi praktykami branżowymi, takimi jak normy IEC 60076 dotyczące transformatorów.

Pytanie 15

Jaką wartość prądu znamionowego powinien mieć bezpiecznik chroniący uzwojenie pierwotne transformatora bezpieczeństwa 230/24 V, jeśli jest przeznaczony do pracy z obciążeniem rezystancyjnym o maksymalnej mocy 100 W?

A. 0,4 A
B. 0,8 A
C. 1,0 A
D. 0,5 A
Wartość prądu znamionowego bezpiecznika, który zabezpiecza uzwojenie pierwotne transformatora bezpieczeństwa 230/24 V, powinna wynosić 0,5 A. Aby obliczyć odpowiedni prąd znamionowy, można skorzystać z podstawowego wzoru: P = U * I, gdzie P to moc (w watach), U to napięcie (w woltach), a I to prąd (w amperach). W przypadku obciążenia rezystancyjnego o maksymalnej mocy 100 W, przy napięciu 24 V, obliczamy prąd: I = P / U = 100 W / 24 V = 4,17 A. To jednak dotyczy wyjścia transformatora. Na uzwojeniu pierwotnym, gdzie napięcie wynosi 230 V, moc pozostaje ta sama, więc: I = P / U = 100 W / 230 V = 0,435 A, co oznacza, że dla praktycznych zastosowań, bezpiecznik o wartości 0,5 A, jest odpowiednim wyborem, biorąc pod uwagę także tolerancje i warunki pracy, w tym normy bezpieczeństwa, które zalecają stosowanie bezpieczników o wartościach nominalnych wyższych niż obliczone, aby zapewnić dodatkową ochronę w przypadku chwilowych przeciążeń. Dodatkowo, stosowanie bezpiecznika o tej wartości zapewnia zgodność z normami PN-EN 60269, które regulują zasady zabezpieczeń elektrycznych.

Pytanie 16

Podczas wymiany uzwojeń w transformatorze jednofazowym o parametrach: SN = 200 VA, U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o większej średnicy i mniejszej ilości zwojów niż uzwojenie wtórne
B. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
C. o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne
D. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
Odpowiedź wskazująca, że uzwojenie pierwotne powinno być wykonane z drutu o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne jest poprawna. W transformatorze jednofazowym, stosunek napięć uzwojeń związany jest z relacją liczby zwojów w każdym uzwojeniu. Zależność ta wyraża się wzorem: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia na uzwojeniach pierwotnym i wtórnym odpowiednio, a N1 i N2 to liczby zwojów. Wymiana uzwojeń pierwotnych i wtórnych wiąże się z doborem odpowiedniej średnicy drutu. Mniejsze napięcie na uzwojeniu wtórnym wymaga większej liczby zwojów, co z kolei oznacza, że uzwojenie pierwotne musi być wykonane z cieńszego drutu, aby pomieścić więcej zwojów na danej długości. Przykładowo, w transformatorach stosuje się standardy dotyczące przekrojów drutów, aby zapewnić odpowiednią wydajność prądową i minimalizować straty w cieple. Zastosowanie tej zasady w praktyce prowadzi do efektywniejszego projektu transformatora, co jest kluczowe w wielu aplikacjach elektrycznych, od zasilania urządzeń domowych po zastosowania w przemyśle. Właściwe dobranie wymagań dla uzwojeń jest istotnym elementem inżynieryjnym, który warunkuje trwałość i efektywność transformatora.

Pytanie 17

Kontrole okresowe instalacji elektrycznych niskiego napięcia powinny być realizowane co najmniej raz na

A. 1 rok
B. 3 lata
C. 4 lata
D. 5 lat
Zgodnie z obowiązującymi normami oraz przepisami prawa, badania okresowe instalacji elektrycznej niskiego napięcia powinny być przeprowadzane nie rzadziej niż co 5 lat. Takie podejście ma na celu zapewnienie bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji. W Polsce regulacje te są zawarte w normie PN-IEC 60364-6 oraz w Rozporządzeniu Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. Przeprowadzanie badań co 5 lat pozwala na wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych awarii lub zagrożeń pożarowych. W praktyce, jeśli instalacja jest intensywnie eksploatowana, zaleca się częstsze kontrole, na przykład co 3 lata, ale minimum to właśnie 5 lat. Regularne audyty instalacji mogą obejmować testy wytrzymałości izolacji, pomiary rezystancji uziemienia czy sprawdzanie zabezpieczeń, co jest kluczowe dla ochrony ludzi i mienia.

Pytanie 18

Jak zmieni się ilość ciepła wydobywanego przez grzejnik elektryczny w jednostce czasu, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilające pozostanie takie samo?

A. Zwiększy się dwukrotnie
B. Zmniejszy się czterokrotnie
C. Zwiększy się czterokrotnie
D. Zmniejszy się dwukrotnie
Odpowiedź "Zwiększy się dwukrotnie" jest prawidłowa, ponieważ jest zgodna z prawem Ohma oraz zasadami dotyczącymi oporu elektrycznego w elementach grzewczych. Gdy długość spiralę grzejną skracamy o połowę, to zmniejszamy jej opór o połowę, ponieważ opór elektryczny przewodnika jest proporcjonalny do jego długości. Przy zachowaniu stałego napięcia zasilania, zgodnie z prawem Ohma (I = U/R), prąd przepływający przez grzejnik wzrośnie, gdyż opór maleje. W rezultacie moc wydzielająca się w postaci ciepła w grzałce elektrycznej, która jest opisana wzorem P = U * I, wzrośnie. Podstawiając wyrażenia do wzoru, otrzymujemy, że moc wzrasta dwukrotnie przy zmniejszonym oporze. W praktyce, jest to istotne przy projektowaniu urządzeń grzewczych, gdzie zmiana długości elementów grzewczych może wpływać na ich efektywność. Dobrą praktyką jest przeprowadzanie obliczeń związanych z oporem i mocą, aby zapobiec przegrzaniu lub uszkodzeniu grzałek w systemach grzewczych.

Pytanie 19

Którą z poniższych czynności pracownik ma prawo wykonać bez zlecenia osób nadzorujących jego pracę?

A. Zamiana izolatora na linii napowietrznej nn
B. Zlokalizowanie uszkodzeń w linii kablowej nn
C. Gaszenie pożaru urządzenia elektrycznego
D. Renowacja rozdzielnicy po likwidacji pożaru
Gaszenie pożaru urządzenia elektrycznego jest jedyną czynnością, którą pracownik może wykonać bez wcześniejszego polecenia osób dozorujących, gdyż w sytuacjach awaryjnych priorytetem jest ochrona życia oraz mienia. Standardy BHP wskazują, że w razie pożaru, każdy pracownik ma prawo i obowiązek podjąć działania mające na celu jego ugaszenie, o ile to możliwe i bezpieczne. W praktyce, jeśli pracownik zauważy pożar, powinien niezwłocznie podjąć próbę ugaszenia go przy użyciu odpowiednich środków gaśniczych, takich jak gaśnice lub urządzenia automatycznego gaszenia. Tego rodzaju działanie jest zgodne z zasadą „zatrzymaj ogień, zanim on się rozprzestrzeni”, co jest kluczowe w minimalizowaniu szkód i zagrożeń. Zwracając uwagę na procedury zawarte w przepisach, takich jak Rozporządzenie Ministra Spraw Wewnętrznych i Administracji w sprawie ochrony przeciwpożarowej, można zauważyć, że pracownicy są odpowiednio szkoleni i przygotowani do działania w sytuacjach kryzysowych.

Pytanie 20

Który z jednofazowych wyłączników nadprądowych zapewnia odpowiednią ochronę przed porażeniem przy impedancji pętli zwarcia Z = 4,2 Ω?

A. C16
B. B10
C. B16
D. C10
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy typu B charakteryzuje się zdolnością do wykrywania przeciążeń oraz zwarć w instalacjach elektrycznych. Przy impedancji pętli zwarcia Z = 4,2 Ω, wyłącznik B10 zapewnia odpowiednią ochronę przeciwporażeniową, gdyż jego prąd znamionowy wynosi 10 A. W sytuacji zwarcia, czas reakcji wyłącznika jest kluczowy dla bezpieczeństwa, a wyłącznik typu B zadziała przy prądzie zwarciowym w granicach 3 do 5 krotności prądu znamionowego. Przykładowo, dla prądu zwarciowego rzędu 30 A, wyłącznik ten zadziała w czasie wystarczającym, by zminimalizować ryzyko uszkodzenia instalacji oraz zapobiec porażeniom. Zgodnie z normami, takimi jak PN-EN 60898, dobór wyłącznika powinien być dostosowany do warunków pracy oraz charakterystyki obciążenia, co potwierdza wybór B10 jako właściwy. Dodatkowo, stosowanie wyłączników nadprądowych zgodnych z obowiązującymi regulacjami sprzyja utrzymaniu wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 21

W ramce zamieszczono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych i napięciowych watomierzy należy wybrać, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i obciążony znamionowo przy połączeniu w gwiazdę?

Silnik 3~   Typ 1E2-90S-4 S1
1,1 kW   3,2/1,8 A   Izol. F
IP55   1420 obr/min   cosφ 0,75
230/400 V   50 Hz
A. In = 1 A, Un = 400 V
B. In = 1 A, Un = 200 V
C. In = 2 A, Un = 400 V
D. In = 2 A, Un = 200 V
Wybór zakresu cewek prądowych i napięciowych watomierza w układzie Arona jest kluczowy dla dokładnych pomiarów mocy silnika trójfazowego. W tym przypadku, znamionowy prąd silnika wynosi 1,8 A, co oznacza, że cecha cewki prądowej powinna być dostosowana do wyższej wartości, aby zminimalizować ryzyko przeciążenia. Dlatego wybór 2 A dla cewek prądowych jest uzasadniony. Co więcej, napięcie znamionowe silnika wynosi 400 V w układzie gwiazda, co odpowiada napięciu międzyfazowemu. Zastosowanie cewki napięciowej o wartości 400 V zapewnia, że pomiar będzie dokonany w odpowiednim zakresie, co jest zgodne z najlepszymi praktykami branżowymi. Takie podejście nie tylko zapewnia precyzyjność, ale również bezpieczeństwo operacyjne, gdyż pozwala na uniknięcie przeciążeń, które mogą prowadzić do uszkodzeń sprzętu. W praktyce, dobór odpowiednich zakresów cewek prądowych i napięciowych jest kluczowy dla prawidłowego monitorowania i zarządzania pracą silników trójfazowych, co jest istotne dla efektywności energetycznej i długowieczności urządzeń. Dobrze dobrany sprzęt pomiarowy może również przyczynić się do zmniejszenia kosztów operacyjnych, co jest istotne w obszarze przemysłowym.

Pytanie 22

W ramach badań eksploatacyjnych silnika indukcyjnego, wykonuje się pomiar

A. oporu rdzenia stojana
B. oporu uzwojeń stojana
C. intensywności pola magnetycznego
D. okresu jego działania
Pomiar rezystancji uzwojeń stojana silnika indukcyjnego jest kluczowym elementem badań eksploatacyjnych, ponieważ pozwala na ocenę stanu uzwojeń, co jest istotne dla efektywności oraz niezawodności pracy silnika. Wysoka rezystancja może wskazywać na uszkodzenia, takie jak przegrzanie czy korozja. Regularne pomiary rezystancji uzwojeń pomagają w identyfikacji potencjalnych problemów zanim doprowadzą one do poważniejszych awarii, co w konsekwencji przyczynia się do obniżenia kosztów eksploatacji oraz zwiększenia czasu pracy silników. Przykładowo, w przemyśle motoryzacyjnym i w aplikacjach przemysłowych, gdzie silniki są kluczowym elementem pracy, monitorowanie parametrów jak rezystancja uzwojeń pozwala na optymalizację procesów produkcyjnych. Dobre praktyki w zakresie diagnostyki silników przewidują systematyczne wykonywanie tego typu pomiarów, co jest zgodne z normami ISO 9001, które podkreślają znaczenie jakości i monitorowania procesów.

Pytanie 23

Jaki dodatkowy komponent (urządzenie) jest wymagany do funkcjonowania silnika indukcyjnego trójfazowego, zasilanego napięciem jednofazowym U = 230 V, f= 50 Hz?

A. Kondensator
B. Bezpiecznik silnikowy
C. Bezpiecznik różnicowoprądowy
D. Opornik
Kondensator jest niezbędnym elementem w przypadku zasilania silnika indukcyjnego trójfazowego napięciem jednofazowym. Silniki indukcyjne trójfazowe wymagają trzech faz zasilania dla uzyskania pełnej mocy oraz momentu obrotowego. Zasilanie jednofazowe powoduje, że silnik nie może wygenerować odpowiedniego momentu obrotowego oraz obrotu, dlatego kondensator służy jako środek do generowania drugiej fazy. W praktyce, kondensatory są stosowane w różnych konfiguracjach, takich jak kondensatory rozruchowe, które pomagają w uruchomieniu silnika, oraz kondensatory pracy, które poprawiają efektywność jego działania. Zastosowanie kondensatora pozwala na zrównoważenie obciążeń oraz zmniejszenie zniekształceń w sieci zasilającej, co jest zgodne z dobrymi praktykami zarządzania energią w instalacjach elektrycznych. W branży często stosuje się standardy IEC dotyczące urządzeń elektrycznych, w tym odpowiednich parametrów kondensatorów do silników, co zapewnia ich bezpieczeństwo i efektywność.

Pytanie 24

Jakiego z wymienionych przyrządów należy użyć wraz z watomierzem, aby obliczyć współczynnik mocy urządzenia elektrycznego zasilanego prądem sinusoidalnym?

A. Woltomierza
B. Częstościomierza
C. Waromierza
D. Amperomierza
Waromierz jest urządzeniem, które bezpośrednio umożliwia pomiar mocy czynnej w obwodach prądu sinusoidalnego. Współczynnik mocy, oznaczany jako cos φ, to miara efektywności, z jaką dane urządzenie elektryczne wykorzystuje moc. Jest on zdefiniowany jako stosunek mocy czynnej (wata) do mocy pozornej (woltampery). Aby precyzyjnie obliczyć współczynnik mocy, konieczne jest równoczesne stosowanie watomierza i waromierza. Waromierz mierzy różnicę fazy pomiędzy prądem a napięciem, co jest kluczowe dla określenia, jak efektywnie energia elektryczna jest konwertowana na pracę. W praktyce, użycie waromierza w połączeniu z watomierzem pozwala na właściwe określenie strat energii, co jest istotne w przypadku aplikacji przemysłowych oraz w systemach zasilania, gdzie efektywność energetyczna ma kluczowe znaczenie. Zgodnie z normami IEC 61000 oraz ANSI C12, stosowanie waromierza w obliczeniach związanych z mocą jest standardową praktyką inżynieryjną.

Pytanie 25

Istotnym czynnikiem wpływającym na skuteczność chłodzenia indukcyjnego silnika elektrycznego jest

A. wlot powietrza
B. czujnik temperatury
C. koło pasowe
D. klatka wirnika
Wlot powietrza odgrywa kluczową rolę w efektywności chłodzenia indukcyjnego silnika elektrycznego. Odpowiednia wentylacja jest niezbędna do odprowadzania ciepła generowanego podczas pracy silnika, co wpływa na jego wydajność i żywotność. Wlot powietrza umożliwia cyrkulację chłodnego powietrza do wnętrza silnika, co przyczynia się do obniżenia temperatury komponentów, takich jak stator i wirnik. Zastosowanie odpowiednio zaprojektowanych kanałów wentylacyjnych, zgodnych z normami IEC 60034, pozwala na optymalne chłodzenie silnika, minimalizując ryzyko przegrzania. W praktyce, wloty powietrza powinny być regularnie kontrolowane oraz wentylowane, aby zapewnić właściwe odprowadzanie ciepła. Przykładem skutecznego zastosowania jest użycie wentylatorów chłodzących, które wspomagają naturalną cyrkulację powietrza w silnikach o dużej mocy, co znacząco poprawia ich efektywność energetyczną i wydajność operacyjną.

Pytanie 26

Który z poniższych pomiarów potwierdza ciągłość przewodu ochronnego w układzie TN-S?

A. Rezystancji izolacji przewodu ochronnego
B. Prądu upływu w przewodzie ochronnym
C. Rezystancji uziomu
D. Impedancji pętli zwarcia
Odpowiedź dotycząca impedancji pętli zwarcia jest poprawna, ponieważ jest to kluczowy parametr w ocenie ciągłości przewodu ochronnego w systemie TN-S. W systemach ochrony przeciwporażeniowej, takich jak TN-S, impedancja pętli zwarcia odgrywa istotną rolę w zapewnieniu skutecznej i szybkiej reakcji zabezpieczeń na zwarcie. Wysoka jakość przewodu ochronnego wymaga, aby jego impedancja była odpowiednio niska, co pozwala na szybkie załączenie wyłącznika nadprądowego w przypadku wystąpienia zwarcia. Praktyczne zastosowanie tego pomiaru można zobaczyć w trakcie testów instalacji elektrycznych, gdzie zmierzone wartości impedancji pętli zwarcia są porównywane z wymaganiami standardów, takich jak PN-IEC 60364, które wskazują na maksymalne wartości impedancji, aby zapewnić bezpieczeństwo użytkowników. Odpowiednia analiza impedancji pętli zwarcia jest także niezbędna w procesie odbioru instalacji elektrycznych oraz w regularnych przeglądach technicznych, co wpływa na długotrwałe i bezpieczne użytkowanie instalacji elektrycznej.

Pytanie 27

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. aL
B. gB
C. gR
D. aM
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 28

Która z poniższych opcji najprawdopodobniej prowadzi do obniżenia prędkości obrotowej silnika indukcyjnego pod obciążeniem?

A. Wyższa częstotliwość napięcia zasilającego
B. Niewłaściwe wyważenie wirnika silnika
C. Nierównomierna szczelina powietrzna w silniku
D. Przerwa w jednym z fazowych przewodów zasilających
Przerwa w jednym z fazowych przewodów zasilających jest najczęstszą przyczyną zmniejszenia prędkości obrotowej obciążonego silnika indukcyjnego. Taki stan rzeczy prowadzi do nierównomiernego zasilania silnika, co skutkuje nieodpowiednim momentem obrotowym oraz destabilizacją pracy maszyny. W przypadku silników trójfazowych, przerwa w jednej z faz powoduje, że silnik nie może osiągnąć pełnej prędkości obrotowej, co prowadzi do nadmiernego nagrzewania oraz potencjalnego uszkodzenia wirnika. Praktycznie, operatorzy maszyn powinni regularnie kontrolować linie zasilające oraz stosować odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zapobiec awariom w wyniku przerwy w zasilaniu. Ważne jest również, aby przeprowadzać okresowe inspekcje stanu kabli oraz złączek, co jest zgodne z normami branżowymi, takimi jak IEC 60204-1 dotycząca bezpieczeństwa urządzeń elektrycznych.

Pytanie 29

Który z podanych wyłączników nadprądowych powinien być użyty w obwodzie zasilającym tylko rezystancyjny grzejnik elektryczny z trzema grzałkami o mocy 3 kW każda, połączonymi w trójkąt i zasilanym z sieci 3/N/PE ~ 400/230 V 50 Hz?

A. CLS6-B16/4
B. CLS6-B16/3N
C. CLS6-B16/3
D. CLS6-C16/1N
Pozostałe odpowiedzi nie spełniają wymagań dotyczących ochrony obwodu zasilającego grzejnik elektryczny. Odpowiedź CLS6-C16/1N nie jest właściwa, ponieważ jest to wyłącznik jednofazowy, a obwód, w którym zainstalowany jest grzejnik, jest trójfazowy. Zastosowanie wyłącznika jednofazowego w obwodzie trójfazowym prowadziłoby do nieprawidłowej ochrony, a w przypadku awarii mogłoby to skutkować poważnymi uszkodzeniami instalacji. Odpowiedź CLS6-B16/4 jest także błędna ze względu na to, że wyłącznik ten ma cztery bieguny, co nie ma zastosowania w obwodach trójfazowych z przewodem neutralnym. W instalacjach trójfazowych wykorzystuje się zazwyczaj wyłączniki trójbiegowe, co czyni tę opcję niewłaściwą. Z kolei wyłącznik CLS6-B16/3N, mimo że teoretycznie mógłby być odpowiedni z uwagi na obecność przewodu neutralnego, nie jest optymalnym wyborem dla obwodu głównie rezystancyjnego, jakim jest grzejnik elektryczny. Obciążenia rezystancyjne charakteryzują się stabilnym prądem, co oznacza, że wyłączniki B są bardziej odpowiednie niż N, które są zaprojektowane do ochrony obwodów z obciążeniami nieliniowymi. Dlatego ważne jest, aby dobór wyłącznika nadprądowego był zgodny z charakterem obciążenia oraz wymaganiami normatywnymi, co zapewnia bezpieczeństwo oraz odpowiednią funkcjonalność instalacji elektrycznej.

Pytanie 30

Obroty silnika indukcyjnego klatkowego obciążonego nominalnym momentem znacząco spadły. Jakie mogą być tego przyczyny?

A. Zbyt wysoka temperatura uzwojeń
B. Zadziałanie przekaźnika termicznego
C. Zwarcie w obwodzie wirnika
D. Przepalony bezpiecznik topikowy w jednej z faz
Przepalony bezpiecznik topikowy w jednej fazie to jedna z najczęstszych przyczyn nagłego spadku obrotów silnika indukcyjnego klatkowego. Silnik tego typu działa na zasadzie zasilania trójfazowego, a każdy z obwodów fazowych jest kluczowy dla prawidłowego funkcjonowania całego układu. W przypadku przepalenia bezpiecznika w jednej z faz, silnik zostaje zasilany tylko z dwóch faz, co prowadzi do znacznego spadku momentu obrotowego i w konsekwencji obrotów. Gdy obciążenie silnika osiąga wartość znamionową, a jedna z faz jest wyłączona, silnik nie jest w stanie dostarczyć wymaganego momentu obrotowego. Przykładem zastosowania tej wiedzy jest regularne monitorowanie stanu bezpieczników w instalacjach przemysłowych oraz korzystanie z systemów detekcji, które mogą zasygnalizować spadek wydajności zasilania. Dobrym rozwiązaniem jest także wprowadzenie systemów automatycznego wyłączania urządzeń w przypadku wykrycia problemów z zasilaniem, co może zapobiec uszkodzeniom silnika.

Pytanie 31

Jaką wartość powinno mieć napięcie testowe podczas pomiaru rezystancji izolacyjnej uzwojenia wtórnego transformatora ochronnego?

A. 2 000 V
B. 1 000 V
C. 250 V
D. 500 V
Wartość napięcia probierczego przy pomiarach rezystancji izolacji uzwojenia wtórnego transformatora bezpieczeństwa powinna wynosić 250 V. Zgodnie z normami IEC 61557 oraz PN-EN 61557-1, pomiary rezystancji izolacji są przeprowadzane w celu oceny stanu izolacji oraz jej zdolności do zapewnienia bezpieczeństwa użytkowników. Napięcie 250 V jest uznawane za odpowiednie dla systemów niskonapięciowych, w tym transformatorów bezpieczeństwa, aby nie uszkodzić wrażliwych komponentów. Dodatkowo, stosowanie niższego napięcia probierczego, jak 250 V, jest zalecane w kontekście minimalizacji ryzyka uszkodzenia izolacji oraz potencjalnych zagrożeń elektrycznych. Przykładem zastosowania jest regularne testowanie instalacji elektrycznej w budynkach użyteczności publicznej, gdzie zgodnie z przepisami bezpieczeństwa elektrycznego, przeprowadzane są pomiary rezystancji izolacji dla oceny jej stanu. Ekspert zaleca takie pomiary co najmniej raz na pięć lat, aby zapewnić wysoką jakość oraz bezpieczeństwo instalacji.

Pytanie 32

Który z poniższych kabli nadaje się do realizacji instalacji siłowej osadzonej w tynku w konfiguracji sieci TN-S?

A. YStY 5xl mm2
B. YDYżo 5x2,5 mm2
C. YADY 3x4 mm2
D. YSLY 3x2,5 mm2
Odpowiedź YDYżo 5x2,5 mm2 jest poprawna, ponieważ przewód ten spełnia wymagania dotyczące instalacji siłowych w układzie sieciowym TN-S, który jest jednym z systemów zasilania o uziemieniu neutralnym. Przewody YDYżo charakteryzują się dobrą odpornością na działanie wysokich temperatur oraz chemikaliów, co czyni je odpowiednimi do użytku w tynku. W przypadku instalacji siłowych, przewody te muszą być odpowiednio dobrane do obciążenia, co w tym przypadku jest realizowane przez przekrój 2,5 mm2, wystarczający do zasilania urządzeń elektrycznych o średnich wymaganiach mocy. Dobrą praktyką jest stosowanie przewodów wielożyłowych w instalacjach, co pozwala na lepsze zarządzanie przewodami i ułatwia ich montaż. Przewody YDYżo są również zgodne z normą PN-EN 60228, która określa wymagania dla przewodów miedzianych, co dodatkowo podkreśla ich odpowiedniość do zastosowań w instalacjach elektrycznych.

Pytanie 33

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Pomiar rezystancji uzwojeń stojana
B. Pomiar napięcia zasilającego
C. Weryfikacja stanu ochrony przeciwporażeniowej
D. Przeprowadzenie próbnego rozruchu urządzenia
Pomiar napięcia zasilania nie należy do badań eksploatacyjnych silnika elektrycznego, ponieważ jest to czynność raczej związana z kontrolą źródła zasilania, a nie diagnostyką samego silnika. W kontekście eksploatacji silników elektrycznych, kluczowe jest zrozumienie, że badania eksploatacyjne koncentrują się na ocenie stanu technicznego komponentów silnika, takich jak uzwojenia, izolacja czy mechanika. Pomiar rezystancji uzwojeń stojana oraz sprawdzenie stanu ochrony przeciwporażeniowej są kluczowe dla bezpieczeństwa i efektywności pracy silnika. Rozruch próbny urządzenia jest niezbędny do oceny jego działania w rzeczywistych warunkach. Przykładowo, w przemyśle, regularne badania eksploatacyjne pozwalają na wczesne wykrycie potencjalnych awarii, co zmniejsza ryzyko przestojów i zwiększa efektywność operacyjną.

Pytanie 34

Jaką wielkość należy zmierzyć, aby ocenić skuteczność zabezpieczeń podstawowych w elektrycznej instalacji o napięciu znamionowym do 1 kV?

A. Napięcia krokowego
B. Rezystancji uziomu
C. Rezystancji izolacji
D. Impedancji zwarciowej
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony podstawowej w instalacjach elektrycznych, szczególnie w tych o napięciu znamionowym do 1 kV. Odpowiedni poziom rezystancji izolacji zapewnia, że nie występują niepożądane przepływy prądu do ziemi, co mogłoby prowadzić do porażenia prądem lub uszkodzenia urządzeń. Zgodnie z normą PN-EN 60364-6, minimalna rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla systemów o napięciu do 1 kV, co gwarantuje odpowiednie bezpieczeństwo. Przykładem zastosowania tego pomiaru jest przeprowadzanie testów przed oddaniem do użytkowania nowej instalacji, a także regularne kontrole w celu wykrycia degradacji izolacji na skutek starzenia się materiałów, wilgoci czy innych czynników zewnętrznych. Dzięki tym pomiarom można zminimalizować ryzyko awarii, co jest szczególnie istotne w obiektach użyteczności publicznej oraz w środowiskach przemysłowych, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie.

Pytanie 35

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli. Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
B. pierwszy i drugi działają nieprawidłowo.
C. pierwszy i drugi działają prawidłowo.
D. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
Wyłącznik różnicowoprądowy nr 1 działa prawidłowo, co oznacza, że jego rzeczywisty prąd wyzwalający wynoszący 20 mA jest zgodny z wymaganiami. Zgodnie z normami, prąd wyzwalający powinien mieścić się w przedziale od 0,5 do 1,0 wartości znamionowej, w tym przypadku od 15 mA do 30 mA. Taki wyłącznik zapewnia odpowiednią ochronę przed porażeniem prądem elektrycznym oraz minimalizuje ryzyko uszkodzenia instalacji elektrycznej. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, szczególnie w miejscach narażonych na wilgoć. Ważne jest, aby regularnie testować ich działanie, co można zrealizować za pomocą przycisków testowych umieszczonych na obudowie urządzenia. Zgodnie z zasadami dobrej praktyki, zaleca się, aby co najmniej raz na pół roku przeprowadzać kontrolę działania wyłączników, aby upewnić się, że są w pełni sprawne i mogą skutecznie chronić użytkowników.

Pytanie 36

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowoprądowymi nie jest zobowiązana do zawierania

A. zasad bezpieczeństwa dotyczących wykonywania prac eksploatacyjnych
B. spisu terminów oraz zakresów testów i pomiarów kontrolnych
C. opisu doboru urządzeń zabezpieczających
D. charakterystyki technicznej instalacji
Twoja odpowiedź jest całkiem trafna. Wiesz, że instrukcje dotyczące eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadmiarowoprądowymi nie muszą zawierać szczegółowych informacji o doborze urządzeń. Z mojego doświadczenia, dobór tych urządzeń najczęściej robi się na etapie projektowania, według norm, jak chociażby PN-IEC 60364-1. W instrukcji powinno być raczej opisane, jak działają już wybrane urządzenia, ich typy i zasady użytkowania. Na przykład, lista terminów i zakresów prób oraz pomiarów kontrolnych jest kluczowa, żeby wszystko działało bezpiecznie i sprawnie. No i oczywiście, zasady bezpieczeństwa przy pracach eksploatacyjnych to podstawa, bo przecież chcemy zminimalizować ryzyko wypadków. Dobrze, żeby dokumentacja była jasna i zgodna z aktualnymi przepisami – to przecież wpływa na bezpieczeństwo i efektywność pracy. Instrukcja to powinna być pomoc, która zapewnia, że instalacja będzie działać prawidłowo, a nie miejsce na podstawowe zasady doboru zabezpieczeń.

Pytanie 37

Zespół elektryków ma wykonać na polecenie pisemne prace konserwacyjne przy urządzeniu elektrycznym.
Jak powinien postąpić kierujący zespołem w przypadku stwierdzenia niedostatecznego oświetlenia w miejscu pracy?

Wykonać zleconą pracęPowiadomić przełożonego
o niedostatecznym oświetleniu
A.TAKNIE
B.TAKTAK
C.NIETAK
D.NIENIE
A. B.
B. D.
C. C.
D. A.
Wybór odpowiedzi C jest zgodny z zasadami BHP, które nakładają na kierownika zespołu obowiązek zapewnienia bezpiecznych warunków pracy. Niedostateczne oświetlenie stwarza ryzyko wypadków, co może prowadzić do poważnych konsekwencji zarówno dla pracowników, jak i dla pracodawcy. W sytuacji, gdy oświetlenie nie spełnia norm, kierujący zespołem powinien niezwłocznie zaprzestać wszelkich prac i poinformować przełożonego. Zgodnie z normą PN-EN 12464-1, miejsca pracy powinny być odpowiednio oświetlone, aby zminimalizować ryzyko błędów i wypadków. Przykładowo, w przypadku prac konserwacyjnych na wysokości, odpowiednie oświetlenie jest kluczowe dla bezpiecznej nawigacji i wykonywania zadań. Oprócz tego, zgodnie z wytycznymi BHP, pracownicy powinni być szkoleni w zakresie identyfikacji zagrożeń związanych z oświetleniem i wiedzieć, jak reagować w takich sytuacjach. Dlatego odpowiedź C nie tylko wskazuje na właściwe postępowanie, ale także na dbałość o bezpieczeństwo i zdrowie zespołu.

Pytanie 38

Ile minimum osób powinno zajmować się pracami w warunkach szczególnego zagrożenia?

A. Jedna osoba
B. Dwie osoby
C. Cztery osoby
D. Trzy osoby
Odpowiedź, że co najmniej dwie osoby powinny wykonywać prace w warunkach szczególnego zagrożenia, jest zgodna z zasadami bezpieczeństwa i higieny pracy (BHP). W praktyce oznacza to, że w sytuacjach stwarzających ryzyko dla zdrowia lub życia, konieczne jest, aby jedna osoba mogła nie tylko wykonać dane zadanie, ale także zapewnić wsparcie oraz interwencję w przypadku nagłego wypadku. Taka zasada jest szczególnie ważna w środowiskach, gdzie występują czynniki niebezpieczne, takie jak substancje chemiczne, prace na wysokości czy w zamkniętych przestrzeniach. W odniesieniu do standardów OSHA (Occupational Safety and Health Administration) oraz normy ISO 45001, które dotyczą zarządzania bezpieczeństwem i zdrowiem w pracy, posiadanie co najmniej dwóch pracowników przy takich zadaniach jest kluczowe dla zapewnienia odpowiedniej reakcji na potencjalne zagrożenia. Przykładem może być sytuacja, w której jeden pracownik może doznać kontuzji lub stracić przytomność, a drugi będzie w stanie wezwać pomoc lub udzielić pierwszej pomocy, co może uratować życie. Dwuosobowa obsada w trudnych warunkach stanowi także dodatkowy element kontroli i bezpieczeństwa, co jest zalecane w wielu branżach, takich jak budownictwo czy przemysł chemiczny.

Pytanie 39

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Która z przyczyn może odpowiadać za zwiększoną wartość ZS w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych
zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość Zs:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
B. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
C. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
D. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
Odpowiedź wskazująca na poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie jest prawidłowa, ponieważ poluzowanie to prowadzi do wzrostu rezystancji w obwodzie, co z kolei prowadzi do zwiększenia wartości impedancji pętli zwarcia (ZS). W systemach elektrycznych, takich jak TN-S, ciągłość przewodów zasilających jest kluczowa dla zapewnienia bezpieczeństwa i efektywności instalacji. Poluzowany przewód może powodować niestabilne połączenia, co skutkuje nieprawidłowym działaniem urządzeń oraz może stwarzać zagrożenie pożarowe. W praktyce, aby zminimalizować ryzyko, należy regularnie kontrolować i testować wszystkie połączenia elektryczne, zgodnie z normami PN-IEC 60364, które podkreślają znaczenie właściwego montażu oraz konserwacji instalacji elektrycznych. Dobre praktyki obejmują także stosowanie narzędzi do pomiaru impedancji oraz odpowiednich technik diagnostycznych, aby wcześnie wykrywać problemy z połączeniami.

Pytanie 40

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz

A. PKZM01 – 1
B. MMS-32S – 1,6A
C. PKZM01 – 0,63
D. MMS-32S – 4A
Wybór niewłaściwych wyłączników silnikowych często wynika z niepełnego zrozumienia zasad doboru urządzeń zabezpieczających dla silników elektrycznych. Na przykład, MMS-32S – 4A oferuje zbyt wysoki prąd znamionowy, co może prowadzić do braku skutecznej ochrony silnika. Taki wyłącznik nie zadziała w przypadku przeciążenia, co naraża silnik na uszkodzenia. Z kolei PKZM01 – 0,63, mimo że jest bliższy wymaganiom silnika, także nie spełnia norm, ponieważ jego maksymalny prąd jest zbyt niski w stosunku do prądu znamionowego silnika. Wybierając wyłączniki, należy pamiętać o odpowiednich marginesach prądowych, co oznacza, że wyłącznik powinien mieć wartość znamionową prądu większą niż prąd roboczy silnika, ale nie przeładowaną, aby nie doszło do fałszywych zadziałań. Niewłaściwy dobór wyłączników może prowadzić do poważnych konsekwencji, takich jak uszkodzenie silnika, a także potencjalne ryzyko pożaru z powodu przeciążeń. W związku z tym, kluczowe jest przestrzeganie norm dotyczących instalacji elektrycznych i zabezpieczeń, takich jak IEC 60947, które dostarczają wytycznych na temat bezpiecznego doboru urządzeń ochronnych dla silników. Zrozumienie tych zasad jest fundamentalne dla właściwego funkcjonowania systemów elektrycznych i ochrony sprzętu.