Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 18 grudnia 2025 13:55
  • Data zakończenia: 18 grudnia 2025 14:29

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Ile wynosi wartość mocy biernej w symetrycznym układzie trójfazowym przedstawionym na rysunku, jeżeli watomierz wskazuje 100 W?

Ilustracja do pytania
A. 100 var
B. 173 var
C. 300 var
D. 519 var
Poprawna odpowiedź to 173 var, ponieważ w symetrycznym układzie trójfazowym moc bierna jest związana z mocą czynną. Wartość mocy biernej Q można obliczyć za pomocą wzoru Q = √3 * P, gdzie P to moc czynna. W przypadku, gdy watomierz wskazuje 100 W, możemy zastosować ten wzór, co prowadzi nas do obliczenia Q = √3 * 100 W, co daje około 173 var. W praktyce, moc bierna jest istotna w kontekście projektowania instalacji elektrycznych, gdzie ważne jest zrozumienie relacji między mocą czynną a mocą bierną, by zapewnić optymalne działanie urządzeń elektrycznych. W kontekście norm PN-EN 50160, które dotyczą jakości energii elektrycznej, światłowodów i systemów zasilania, umiejętność obliczania tych mocy jest niezbędna dla inżynierów zajmujących się systemami zasilania i ochroną przed przepięciami. Wiedza ta pozwala również na lepsze zarządzanie zużyciem energii i minimalizację strat, co jest kluczowe w działalności przemysłowej oraz w kontekście zrównoważonego rozwoju.

Pytanie 2

Na podstawie charakterystyki przedstawionej na rysunku określ przedział czasu, w którym może, lecz nie musi nastąpić zadziałanie wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA, przy przepływie przez niego prądu o wartości 25 A.

Ilustracja do pytania
A. 10 s ÷ 60 s
B. 60 s ÷ 10 000 s
C. 0,06 s ÷ 0,017 s
D. 0 s ÷ 0,06 s
Poprawna odpowiedź to 10 s ÷ 60 s, co wynika z charakterystyki wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA. Przy prądzie 25 A, który jest 2,5-krotnością prądu znamionowego wynoszącego 10 A, czas zadziałania wyzwalacza wynosi od 10 do 60 sekund. Tego typu wyłączniki są kluczowe w systemach zasilania, ponieważ chronią obwody przed przegrzaniem i potencjalnym uszkodzeniem spowodowanym nadmiernym prądem. W praktyce oznacza to, że wyzwalacz będzie działał w określonym czasie, co jest istotne dla zapewnienia bezpieczeństwa instalacji elektrycznej. Warto również zauważyć, że zgodność z normą IEC 60947-2, która reguluje wymagania dla wyłączników, potwierdza, że czas zadziałania w tym przedziale jest optymalny dla zachowania równowagi między bezpieczeństwem a funkcjonalnością. Dobrze zaprojektowane systemy powinny uwzględniać te parametry, aby skutecznie chronić przed skutkami przeciążeń.

Pytanie 3

Którego osprzętu instalacyjnego dotyczy przedstawiony fragment opisu?

Fragment opisu osprzętu instalacyjnego
W celu zabezpieczenia przed porażeniem prądem elektrycznym małych dzieci instaluje się modele ze specjalnymi przesłonami torów prądowych. Konstrukcja mechaniczna przesłony uniemożliwia włożenie długopisu, kredki czy innego przewodnika do toru prądowego.

Do uzyskania pełnego bezpieczeństwa stosuje się przesłony torów prądowych wyposażone dodatkowo w tzw. klucz uprawniający, uchylający przesłony torów prądowych.
A. Oprawki źródła światła.
B. Puszki łączeniowej.
C. Wtyczki kabla zasilającego.
D. Gniazda wtykowego.
Gniazda wtykowe to naprawdę ważny element w każdej instalacji elektrycznej, zwłaszcza gdy mowa o bezpieczeństwie, szczególnie dla dzieci. Opisujesz modele gniazd, które mają specjalne przesłony na torach prądowych, co naprawdę chroni przed przypadkowym dotknięciem tych niebezpiecznych części. Te gniazda, które są zgodne z różnymi normami, są stworzone z myślą o tym, żeby minimalizować ryzyko porażenia prądem. Na przykład, gniazda z systemem przesłon pozwalają na wsunięcie wtyczki tylko w konkretnej pozycji, co znacznie ogranicza ryzyko kontaktu z prądem. Używanie takich gniazd jest super ważne w pomieszczeniach, gdzie bywają dzieci, a wiele standardów branżowych, jak np. normy IEC 60884, to potwierdza. To naprawdę praktyczne podejście do projektowania osprzętu zwiększa bezpieczeństwo w naszych domach i miejscach publicznych, gdzie kontakt z prądem może być poważnym zagrożeniem.

Pytanie 4

Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór klucza oczkowego, oznaczonego jako 'C.', do montażu zworek w tabliczce silnikowej jest uzasadniony. Klucz oczkowy jest narzędziem, które idealnie pasuje do standardowych nakrętek stosowanych w takich aplikacjach. Użycie klucza o odpowiednim rozmiarze zapewnia pewny chwyt i minimalizuje ryzyko uszkodzenia nakrętek. W praktyce, przy montażu zworek, klucz oczkowy umożliwia łatwe i precyzyjne dokręcanie, co jest kluczowe dla zapewnienia prawidłowego działania silnika oraz bezpieczeństwa całego układu elektrycznego. Warto zauważyć, że nienałożenie odpowiedniej siły na nakrętki może prowadzić do ich poluzowania się w trakcie eksploatacji, co z kolei może powodować awarie lub uszkodzenia. Korzystając z dobrze dobranego narzędzia, zgodnego z wytycznymi producenta, możemy również zwiększyć efektywność prac i zmniejszyć ryzyko wystąpienia problemów eksploatacyjnych. Dlatego też, znajomość i umiejętność stosowania właściwych narzędzi jest kluczowa w pracy z instalacjami elektrycznymi.

Pytanie 5

Jaki element przedstawiono na rysunku?

Ilustracja do pytania
A. Tulejkę.
B. Złączkę.
C. Wkrętkę redukcyjną.
D. Wkrętkę dławikową.
Element przedstawiony na rysunku to wkrętka dławikowa, która pełni kluczową rolę w instalacjach elektrycznych. Jest to rodzaj złączki, która zapewnia uszczelnienie przewodów wchodzących do puszek, obudów czy urządzeń. Wkrętki dławikowe charakteryzują się specyficznym kształtem, zazwyczaj stożkowym lub cylindrycznym, oraz obecnością gwintu zewnętrznego. Dzięki temu, po dokręceniu, zapewniają one nie tylko szczelność, ale także ochronę przed uszkodzeniami mechanicznymi. Zastosowanie wkrętek dławikowych jest powszechne w branży elektrycznej, gdzie wymagane jest przestrzeganie standardów bezpieczeństwa, takich jak normy IEC. Użycie wkrętek dławikowych w instalacjach zapewnia, że przewody są stabilnie zamocowane i chronione przed działaniem czynników zewnętrznych, co zapobiega awariom i zwiększa trwałość całej instalacji. Warto również zaznaczyć, że odpowiednie uszczelnienie przewodów wpływa na bezpieczeństwo pracy urządzeń, minimalizując ryzyko zwarcia czy innych niebezpiecznych sytuacji.

Pytanie 6

Strzałką oznaczono na rysunku

Ilustracja do pytania
A. styk pomocniczy rozwierny.
B. przycisk zwiemy.
C. styk pomocniczy zwiemy.
D. przycisk rozwierny.
Przycisk rozwierny, nazywany również przyciskiem otwierającym, jest kluczowym elementem w wielu zastosowaniach elektrycznych oraz automatyce. W stanie spoczynku przycisk ten zapewnia przepływ prądu, co oznacza, że obwód jest zamknięty. Po jego aktywowaniu, czyli wciśnięciu, obwód zostaje otwarty, co przerywa przepływ prądu. Tego typu przyciski są powszechnie stosowane w różnych urządzeniach, takich jak dzwonki, alarmy czy systemy automatyki budynkowej. Ich działanie opiera się na zasadzie, że w momencie wciśnięcia przycisku, dochodzi do przełączenia stanu obwodu – z zamkniętego na otwarty. Zastosowanie przycisku rozwiernego jest zgodne z dobrymi praktykami w inżynierii elektrycznej, gdzie kluczowe jest zapewnienie bezpieczeństwa użytkowników. Przykładem może być system alarmowy, gdzie przycisk rozwierny umożliwia wyłączenie alarmu przez użytkownika, co jest istotne w sytuacjach awaryjnych. Ponadto, standardy IEC 60947-5-1 definiują wymagania dotyczące bezpiecznego użytkowania i montażu takich elementów, co czyni je niezawodnymi w codziennym użytkowaniu.

Pytanie 7

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Impregnację uzwojeń i wyważenie wirnika
B. Pomiar rezystancji izolacji i próbne uruchomienie
C. Sprawdzenie układów sterowania i sygnalizacji
D. Sprawdzenie układów rozruchowych i regulacyjnych
Pomiar rezystancji izolacji oraz wykonanie próbnego uruchomienia silnika elektrycznego to kluczowe czynności po jego konserwacji. Rezystancja izolacji jest istotnym wskaźnikiem stanu izolacji uzwojeń silnika; jej wysoka wartość sygnalizuje dobrą izolację, co jest niezbędne do zapewnienia bezpieczeństwa eksploatacji. Standardy takie jak IEC 60034-1 zalecają, aby rezystancja izolacji była co najmniej 1 MΩ na każdy kV napięcia roboczego, co chroni przed przebiciem i zwarciem. Próbne uruchomienie pozwala na ocenę rzeczywistej pracy silnika, w tym jego momentu obrotowego, prędkości i stabilności działania. W praktyce, te czynności pozwalają na wczesne wykrycie potencjalnych usterek, co może zapobiec poważnym awariom i zwiększyć trwałość urządzenia. Regularne pomiary izolacji i testy operacyjne są zgodne z najlepszymi praktykami w branży, co przekłada się na wydajność i bezpieczeństwo operacyjne.

Pytanie 8

Którą z wymienionych wielkości fizycznych można zmierzyć w instalacji elektrycznej przyrządem pomiarowym przedstawionym na rysunku?

Ilustracja do pytania
A. Czas wyłączenia wyłączników instalacyjnych nadprądowych.
B. Rezystancję izolacji przewodów.
C. Prąd różnicowy wyłącznika różnicowoprądowego.
D. Impedancję pętli zwarcia.
Rezystancja izolacji przewodów jest kluczowym parametrem w ocenie stanu technicznego instalacji elektrycznych. Miernik izolacji, przedstawiony na zdjęciu, jest specjalnie zaprojektowany do pomiaru rezystancji izolacji, co pozwala zidentyfikować potencjalne usterki i zapewnić bezpieczeństwo użytkowników. Wysokie wartości rezystancji wskazują na dobrą izolację, co jest zgodne z normami bezpieczeństwa, takimi jak PN-IEC 60364, które stawiają wymagania dotyczące izolacji w instalacjach elektrycznych. Pomiar rezystancji izolacji jest szczególnie istotny przed oddaniem do użytku nowej instalacji lub po przeprowadzeniu prac serwisowych. Regularne kontrole stanu izolacji mogą zapobiegać awariom, w tym porażeniom prądem elektrycznym oraz pożarom spowodowanym uszkodzeniami izolacji. Przykładowo, w obiektach przemysłowych, gdzie występuje duże ryzyko uszkodzeń mechanicznych, zaleca się coroczne wykonywanie pomiarów rezystancji izolacji, aby zapewnić zgodność z przepisami BHP i normami branżowymi.

Pytanie 9

W celu wyrównania potencjałów na elementach metalowych, występujących w budynku, które w normalnych warunkach nie są częścią obwodu elektrycznego, należy zainstalować element oznaczony cyfrą

Ilustracja do pytania
A. 1
B. 5
C. 7
D. 3
Odpowiedź ta jest poprawna, ponieważ wyrównanie potencjałów na elementach metalowych w budynku, które nie są częścią obwodu elektrycznego, jest kluczowym zagadnieniem w zakresie bezpieczeństwa elektrycznego. Szyna wyrównawcza, oznaczona cyfrą '1', pełni istotną funkcję w zapewnieniu, że wszystkie metalowe elementy, takie jak rury, obudowy urządzeń czy inne konstrukcje, są połączone z uziemieniem. Dzięki temu zapobiega się powstawaniu niebezpiecznych różnic potencjałów, które mogą prowadzić do porażeń elektrycznych. W praktyce, stosowanie szyn wyrównawczych jest zgodne z normami, takimi jak PN-EN 62305, które określają wymagania dotyczące ochrony przed porażeniem elektrycznym i zjawiskami wyładowań atmosferycznych. Dobrą praktyką jest regularne sprawdzanie stanu tych połączeń oraz ich integralności, co przyczynia się do zwiększenia bezpieczeństwa użytkowników budynków. W przypadku awarii lub uszkodzenia instalacji, odpowiednio zainstalowana szyna wyrównawcza umożliwia skuteczne odprowadzenie prądów upływowych, zminimalizowanie ryzyka uszkodzenia sprzętu oraz ochronę zdrowia osób przebywających w danym obiekcie.

Pytanie 10

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
B. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
C. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
D. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
Wymontowanie źródeł światła i zamknięcie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest kluczowym krokiem, który ma na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. Podczas testowania rezystancji izolacji ważne jest, aby żadne źródło ładunku nie było podłączone do obwodu, ponieważ może to prowadzić do fałszywych odczytów oraz uszkodzenia urządzeń. Zamknięcie łączników instalacyjnych eliminuje ryzyko przypadkowego włączenia obwodu w trakcie testu. Zgodnie z normą PN-EN 61557, przed przeprowadzeniem pomiarów należy upewnić się, że obwód jest całkowicie odłączony od zasilania, a wszelkie elementy, które mogą wprowadzić zmienność w pomiarach, są usunięte. Praktyczne zastosowanie tej procedury znajduje zastosowanie w przemyśle budowlanym oraz w konserwacji instalacji elektrycznych, gdzie bezpieczeństwo i dokładność pomiarów są priorytetowe.

Pytanie 11

W oprawie oświetleniowej pokazanej na zdjęciu została zamontowana żarówka

Ilustracja do pytania
A. żarowa.
B. sodowa.
C. halogenowa.
D. rtęciowa.
Wybór żarówki sodowej, rtęciowej lub żarowej jako odpowiedzi wskazuje na pewne nieporozumienia dotyczące budowy i zastosowania różnych typów źródeł światła. Żarówki sodowe, na przykład, są powszechnie stosowane w oświetleniu ulicznym i mają charakterystyczny żółty kolor światła, co czyni je mniej efektywnymi w kontekście oświetlenia wnętrz, w którym wymagane jest naturalne odwzorowanie kolorów. Z kolei żarówki rtęciowe były popularne w przeszłości, ale obecnie są coraz rzadziej stosowane ze względu na ich szkodliwość dla środowiska oraz znaczące zanieczyszczenie światłem. Te źródła światła mają również inną konstrukcję, co sprawia, że są łatwo rozpoznawalne. Żarówki żarowe, mimo że uznawane są za klasyczne rozwiązanie, charakteryzują się niską efektywnością energetyczną oraz krótką żywotnością. W praktyce, ich stosowanie w nowoczesnym oświetleniu jest coraz bardziej ograniczone, co ukazuje zmieniające się normy energetyczne i ekologiczne, które promują bardziej efektywne źródła światła, takie jak halogeny. Dlatego ważne jest, aby zrozumieć różnice między tymi technologiami i podejmować świadome decyzje dotyczące wyboru odpowiednich źródeł światła do danego zastosowania.

Pytanie 12

Która z wielkości elektrycznych jest mierzona w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Impedancja przewodu neutralnego.
B. Impedancja pętli zwarcia.
C. Rezystancja przewodu ochronnego.
D. Rezystancja uziemienia.
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumień dotyczących różnych rodzajów rezystancji i impedancji w instalacjach elektrycznych. Impedancja pętli zwarcia odnosi się do całkowitego oporu w obwodzie w przypadku zwarcia, a jej pomiar jest istotny, by zapewnić odpowiednie działanie zabezpieczeń, ale nie jest to to samo, co rezystancja przewodu ochronnego. Odpowiedź dotycząca rezystancji uziemienia również może być mylnie utożsamiana z pomiarem rezystancji przewodu ochronnego. Uziemienie ma na celu ochronę przed niebezpiecznymi napięciami, natomiast przewód ochronny pełni rolę zabezpieczającą w kontekście porażenia prądem. Impedancja przewodu neutralnego również nie jest związana z pomiarem rezystancji przewodu ochronnego; w zasadzie odnosi się do oporu, który występuje w przewodzie neutralnym w trakcie normalnej pracy instalacji. Typowym błędem myślowym jest mylenie tych pojęć i branie pod uwagę nieodpowiednich parametrów podczas pomiarów. Kluczowe jest zrozumienie specyfikacji oraz funkcji poszczególnych przewodów w systemach elektrycznych, co jest niezbędne do prawidłowego diagnozowania i konserwacji instalacji. Znajomość różnic między tymi wielkościami jest fundamentalna dla bezpieczeństwa i efektywności systemu elektrycznego.

Pytanie 13

Na schematach instalacji elektrycznych symbol z rysunku oznacza

Ilustracja do pytania
A. cewkę przekaźnika z opóźnionym działaniem.
B. cewkę przekaźnika z opóźnionym odpadaniem.
C. wyzwalanie cieplne.
D. wyzwalanie elektroniczne.
Zrozumienie symboliki używanej w instalacjach elektrycznych jest kluczowe dla właściwego projektowania i analizy systemów zabezpieczeń. Jednakże, odpowiedzi takie jak wyzwalanie elektroniczne, cewka przekaźnika z opóźnionym działaniem oraz cewka przekaźnika z opóźnionym odpadaniem nie oddają właściwego znaczenia symbolowi przedstawionemu na schemacie. Wyzwalanie elektroniczne odnosi się do mechanizmów, które wykorzystują układy elektroniczne do detekcji przeciążeń i zwarć, a nie do działań opartych na cieple. Oznacza to, że wyzwalanie elektroniczne ma swoje zastosowanie, ale nie jest to rozwiązanie ukierunkowane na zabezpieczenia przed przeciążeniem termicznym. Podobnie, cewki przekaźników z opóźnionym działaniem i odpadaniem dotyczą mechanizmów, które wprowadzają czasowy aspekt do działania przekaźnika, co może być użyteczne w innych kontekstach, jednak nie są one związane z wyzwalaniem cieplnym. W praktyce, wielu inżynierów może popełnić błąd, zakładając, że te mechanizmy są wymienne, co jest mylnym podejściem. Wiedza na temat różnic między tymi rozwiązaniami jest niezbędna dla skutecznego projektowania systemów elektrycznych, które są zarówno bezpieczne, jak i efektywne. Warto zaznaczyć, że każdy z tych typów wyzwalania ma swoje specyficzne zastosowanie i zrozumienie ich różnic jest kluczowe w kontekście ochrony systemów elektrycznych przed różnymi typami awarii.

Pytanie 14

Na rysunku przedstawiono schemat

Ilustracja do pytania
A. wyłącznika schodowego.
B. łącznika zmierzchowego.
C. programowalnego przełącznika czasowego.
D. wyłącznika różnicowoprądowego.
Wybór odpowiedzi innej niż wyłącznik różnicowoprądowy wskazuje na nieporozumienia dotyczące funkcji i budowy różnych urządzeń elektrycznych. Programowalny przełącznik czasowy to urządzenie, które pozwala na automatyczne włączanie i wyłączanie obwodów elektrycznych w określonym czasie, co jest zupełnie inną funkcjonalnością niż zabezpieczanie przed porażeniem prądem. Łącznik zmierzchowy z kolei działa na zasadzie aktywacji oświetlenia w zależności od natężenia światła, co również nie ma nic wspólnego z ochroną przed upływem prądu. Wyłącznik schodowy, stosowany w instalacjach oświetleniowych, umożliwia sterowanie jednym źródłem światła z dwóch miejsc, jednak nie pełni funkcji zabezpieczających. Kluczowym błędem jest nieznajomość zasad działania wyłączników różnicowoprądowych, które są zaprojektowane specjalnie do wykrywania niebezpiecznych różnic prądów. Niezrozumienie tego zagadnienia może prowadzić do nieodpowiedniego doboru urządzeń w instalacjach elektrycznych, co z kolei może zwiększać ryzyko wypadków oraz zagrożeń dla zdrowia i życia. Wiedza na temat funkcji każdego z tych urządzeń jest kluczowa dla zapewnienia bezpieczeństwa w infrastrukturze elektrycznej.

Pytanie 15

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Tuleja redukcyjna
B. Podkładka dystansowa
C. Podkładka sprężysta
D. Tuleja kołnierzowa
Podkładka sprężysta jest elementem zabezpieczającym, który zapobiega luzowaniu się nakrętek w połączeniach śrubowych. Działa na zasadzie sprężystości, co oznacza, że po zastosowaniu podkładki siła nacisku utrzymuje się, zapobiegając odkręcaniu się nakrętki w wyniku drgań lub obciążeń dynamicznych. W praktyce, podkładki sprężyste są często stosowane w różnych zastosowaniach inżynieryjnych, takich jak w przemyśle motoryzacyjnym, budowlanym czy maszynowym. Na przykład, w samochodach podkładki te mogą być używane w miejscach narażonych na wibracje, takich jak układ zawieszenia, aby zapewnić długoterminową stabilność połączeń. Zgodnie z normami ISO i ANSI, stosowanie podkładek sprężystych jest zalecane do poprawy bezpieczeństwa i niezawodności połączeń, co czyni je standardowym rozwiązaniem w wielu projektach inżynieryjnych. Warto również zaznaczyć, że dostępne są różne typy podkładek sprężystych, takie jak podkładki zewnętrzne i wewnętrzne, które należy dobierać w zależności od specyfiki zastosowania oraz rodzaju obciążeń, jakie będą występować w danym połączeniu.

Pytanie 16

Ochronnik oznaczony symbolem graficznym pokazanym na rysunku reaguje na

Ilustracja do pytania
A. przeciążenie.
B. zwarcie doziemne.
C. upływ prądu.
D. przepięcie.
Odpowiedź 'przepięcie' jest prawidłowa, ponieważ symbol graficzny przedstawiony na rysunku wskazuje na ochronnik przepięciowy, który ma za zadanie chronić instalację elektryczną przed nagłymi wzrostami napięcia. Przepięcia mogą wynikać z różnych źródeł, takich jak uderzenia pioruna, nagłe zmiany obciążenia w sieci lub awarie sprzętu. Ochronniki przepięciowe są projektowane w taki sposób, aby szybko odprowadzać nadmiar napięcia do ziemi, co minimalizuje ryzyko uszkodzeń urządzeń podłączonych do instalacji. W praktyce, stosowanie takich ochronników jest kluczowe w systemach elektrycznych, szczególnie w obiektach o wysokiej wartości sprzętu, jak serwerownie czy laboratoria. Ważne jest, aby pamiętać, że regularne przeglądy i konserwacja tych urządzeń są niezbędne dla zapewnienia ich prawidłowego działania. Ochronniki przepięciowe powinny być zgodne z odpowiednimi normami, takimi jak PN-EN 61643-11, co zapewnia ich skuteczność oraz bezpieczeństwo użytkowania.

Pytanie 17

Jakie napięcie powinno być zastosowane w mierniku podczas pomiaru rezystancji izolacyjnej urządzenia elektrycznego o nominalnym napięciu 230/400 V?

A. 750 V
B. 1 000 V
C. 500 V
D. 250 V
Odpowiedź 500 V jest prawidłowa, ponieważ zgodnie z normami i zaleceniami dotyczącymi pomiarów rezystancji izolacji, napięcie testowe powinno być na poziomie 500 V dla maszyn elektrycznych o napięciu znamionowym 230/400 V. Pomiar taki ma na celu wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji. W praktyce, napięcie testowe 500 V jest standardem branżowym, szczególnie w przypadku sprzętu niskonapięciowego, gdyż zapewnia wystarczającą moc do przetestowania izolacji bez ryzyka uszkodzenia elementów wrażliwych. Dodatkowo, w wielu krajach stosowane są normy IEC 60364 oraz IEC 61557, które precyzują wymagania dotyczące pomiarów izolacji, a ich przestrzeganie jest kluczowe dla zapewnienia bezpieczeństwa użytkowania maszyn. Przykładowo, w przypadku stacji transformatorowych, regularne pomiary izolacji przy użyciu napięcia 500 V pozwalają na wczesne wykrywanie problemów i zapobieganie awariom, co przekłada się na dłuższą żywotność urządzeń oraz zwiększone bezpieczeństwo operacyjne.

Pytanie 18

Który przekaźnik oznacza się przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Priorytetowy.
B. Czasowy.
C. Wielofunkcyjny.
D. Impulsowy.
Przekaźnik impulsowy, który widzisz na rysunku w pytaniu, to fajne urządzenie, które jest często używane w automatyce. Działa tak, że przy każdym kolejnym impulsie prądu zmienia stan obwodu. To pozwala na lepsze zarządzanie sygnałami i sterowanie różnymi procesami. W praktyce można go spotkać w systemach zabezpieczeń, automatycznych włącznikach światła czy w urządzeniach do zdalnego sterowania. Jak to działa? Pierwszy impuls zamyka obwód, a następny go otwiera. Dzięki temu można robić różne rzeczy, takie jak liczenie impulsów czy przełączanie. Fajnie, że są normy IEC 60947, które mówią o bezpieczeństwie i niezawodności tych przekaźników, bo to sprawia, że są naprawdę ważnym elementem w nowoczesnych systemach sterowania.

Pytanie 19

Na którym rysunku zamieszczono gniazdo wtyczkowe bryzgoszczelne?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Gniazdo wtyczkowe bryzgoszczelne, które widzisz na zdjęciu C, zostało zaprojektowane tak, żeby dobrze chronić przed wilgocią i wodą. To znaczy, że nadaje się do miejsc, gdzie warunki atmosferyczne mogą być naprawdę trudne. Jest zgodne z normami PN-EN 60670-1, które mówią, jakie powinny być wymagania dla takich gniazd. Często mają dodatkowe uszczelki i osłony, które blokują wodę przed dostaniem się do wnętrza połączenia elektrycznego. W praktyce, gniazda bryzgoszczelne stosuje się w ogrodach, na tarasach albo w pobliżu basenów, gdzie zwykłe gniazda mogłyby się łatwo zepsuć. Fajnie jest też zwracać uwagę na oznaczenia IP, które mówią, jak to gniazdo jest chronione przed wodą i pyłem. Używanie takich gniazd to lepsze bezpieczeństwo dla użytkowników i dłuższa żywotność naszej instalacji elektrycznej.

Pytanie 20

Który typ źródła światła przedstawiono na rysunku?

Ilustracja do pytania
A. Wolframowe.
B. Diodowe.
C. Halogenowe.
D. Rtęciowe.
Odpowiedź diodowe jest poprawna, ponieważ na zdjęciu znajduje się żarówka LED, która jest jednym z najnowocześniejszych źródeł światła dostępnych na rynku. Żarówki LED, czyli diody elektroluminescencyjne, charakteryzują się wysoką efektywnością energetyczną, co oznacza, że emitują więcej światła przy mniejszym zużyciu energii w porównaniu do tradycyjnych żarówek wolframowych czy halogenowych. Dzięki temu są one doskonałym wyborem do oświetlenia domów, biur oraz przestrzeni publicznych. W praktyce, zastosowanie żarówek LED pozwala na znaczną redukcję kosztów energii oraz dłuższy czas użytkowania, sięgający nawet 25 000 godzin. Warto również zwrócić uwagę na standardy ekologiczne, które promują użycie źródeł światła o niskim wpływie na środowisko; żarówki LED nie emitują szkodliwych substancji, takich jak rtęć, co czyni je bardziej ekologicznym wyborem. Dodatkowo, LED-y są dostępne w szerokiej gamie kolorów i temperatur barwowych, co umożliwia ich zastosowanie w różnorodnych projektach oświetleniowych, dostosowanych do indywidualnych potrzeb użytkowników.

Pytanie 21

Jak często należy przeprowadzać okresowe badania eksploatacyjne instalacji elektrycznej w budynku jednorodzinnym?

A. 6 lat
B. 8 lat
C. 5 lat
D. 4 lata
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych powinny być przeprowadzane co 5 lat, co jest zgodne z obowiązującymi normami oraz przepisami prawa energetycznego. Regularne kontrole mają na celu zapewnienie bezpieczeństwa użytkowników oraz niezawodności systemu elektroenergetycznego. W trakcie takich badań ocenia się stan techniczny urządzeń, instalacji oraz ich zgodność z aktualnymi normami. Przykładem może być badanie rezystancji izolacji kabli, które pozwala wykryć potencjalne uszkodzenia mogące prowadzić do zwarć lub pożarów. Dzięki regularnym kontrolom można w porę zidentyfikować i usunąć usterki, co znacząco zwiększa bezpieczeństwo użytkowania instalacji. Dobrą praktyką w branży jest również prowadzenie dokumentacji z przeprowadzonych badań, co pozwala na monitorowanie stanu instalacji w czasie oraz podejmowanie odpowiednich działań prewencyjnych.

Pytanie 22

Której końcówki wkrętaka należy użyć do demontażu wyłącznika nadprądowego z szyny TH 35?

Ilustracja do pytania
A. Końcówki 2.
B. Końcówki 4.
C. Końcówki 1.
D. Końcówki 3.
Końcówka 2. jest właściwym rozwiązaniem, ponieważ wyłączniki nadprądowe montowane na szynie TH 35 wymagają użycia wkrętaka o płaskiej końcówce do ich demontażu. Końcówka płaska zapewnia odpowiednią stabilność i precyzję podczas wkręcania i wykręcania śrub mocujących, co jest kluczowe w kontekście pracy z instalacjami elektrycznymi. Użycie odpowiedniego narzędzia minimalizuje ryzyko uszkodzenia złączy oraz zwiększa bezpieczeństwo pracy. Przykładowo, używając końcówki płaskiej, można z łatwością uzyskać dostęp do wyłącznika, co jest szczególnie istotne w przypadku rutynowych przeglądów lub konserwacji instalacji elektrycznych. Standardy branżowe zalecają korzystanie z narzędzi, które są dostosowane do specyfiki montażu, dlatego znajomość odpowiednich końcówek wkrętaka, jak w tym przypadku, jest niezbędna dla każdego elektryka.

Pytanie 23

W pomieszczeniu przyłączowym budynku sprawdzono ciągłość głównego połączenia wyrównawczego między główną szyną wyrównawczą a czterema punktami, jak na rysunku. Który pomiar powinien wykazać brak ciągłości połączenia?

Ilustracja do pytania
A. 1
B. 2
C. 4
D. 3
Wybór odpowiedzi 1, 2 lub 3 może wydawać się logiczny, jednak opiera się na błędnym założeniu, że wszystkie punkty będą przewodzić prąd bez względu na ich połączenia. Punkty 1, 2 i 3 są podłączone do elementów metalowych, które powinny zapewniać ciągłość połączenia wyrównawczego. Kluczowym aspektem, który jest często mylnie rozumiany, jest zrozumienie, że izolacyjne materiały, takie jak plastik, nie przewodzą prądu. W przypadku punktu 4, jeśli rura gazowa jest wykonana z materiału nieprzewodzącego, to naturalnym jest, że nie może ona zapewnić ciągłości połączenia. Nieprzewodzące materiały nie mogą być używane jako część systemu wyrównawczego, co często prowadzi do błędnych interpretacji i wyborów. Przykładem błędnych wniosków może być przypuszczenie, że każda rura metalowa, niezależnie od połączeń, zawsze zapewnia ciągłość. Niezrozumienie zasady, według której materiał ma kluczowe znaczenie dla właściwego działania instalacji, może prowadzić do poważnych konsekwencji w instalacjach elektrycznych. W branży elektrycznej standardy, takie jak PN-EN 61439, podkreślają znaczenie prawidłowego doboru materiałów oraz sprawowania nad nimi kontroli, co ma istotny wpływ na bezpieczeństwo systemów elektrycznych.

Pytanie 24

Na którym rysunku przedstawiono żarówkę z trzonkiem GU10?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Żarówka z trzonkiem GU10 jest popularnym rozwiązaniem w oświetleniu, szczególnie w zastosowaniach domowych i komercyjnych. Trzonek GU10 ma charakterystyczne bolce, które umożliwiają łatwe i szybkie mocowanie żarówki w oprawie. W przypadku żarówki oznaczonej jako B na zdjęciu, widoczny jest podwójny bolec, co jednoznacznie wskazuje na typ GU10. Tego rodzaju żarówki są często stosowane w reflektorach sufitowych oraz oświetleniu akcentującym, co czyni je idealnym wyborem do różnych aranżacji wnętrz. Warto również zauważyć, że żarówki GU10 dostępne są w różnych wersjach, zarówno LED, jak i halogenowych, co daje większą elastyczność w doborze źródła światła odpowiedniego do danej przestrzeni. W kontekście dobrych praktyk, należy zawsze upewnić się, że dobieramy właściwe źródło światła do odpowiedniej oprawy, aby zapewnić optymalne warunki oświetleniowe oraz minimalizować ryzyko uszkodzenia sprzętu.

Pytanie 25

Jaki przewód na schemacie montażowym instalacji elektrycznej oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Ochronny.
B. Wyrównawczy.
C. Neutralny.
D. Uziemiający.
Odpowiedź "Ochronny" jest prawidłowa, ponieważ symbol przedstawiony na rysunku odnosi się do przewodu ochronnego PE (Protective Earth). Przewód ten jest kluczowym elementem instalacji elektrycznej, mającym na celu zabezpieczenie użytkowników przed porażeniem prądem elektrycznym. W sytuacji awaryjnej, przewód ochronny odprowadza niebezpieczne napięcie do ziemi, co znacząco zmniejsza ryzyko porażenia. W standardach, takich jak Polska Norma PN-IEC 60445:2017, przewód ten powinien być jednoznacznie oznaczony w schematach montażowych, co ułatwia identyfikację i prawidłowy montaż instalacji. Przykładowo, w przypadku uszkodzenia izolacji urządzenia elektrycznego, prawidłowe podłączenie przewodu ochronnego zapewnia, że prąd nie przepłynie przez ciało użytkownika, lecz zostanie skierowany do ziemi. Dzięki temu, stosowanie przewodów ochronnych zgodnie z normami jest fundamentem bezpieczeństwa w każdej instalacji elektrycznej.

Pytanie 26

Na którym rysunku przedstawiono przewód kabelkowy do układania w tynku?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Odpowiedź A jest prawidłowa, ponieważ przedstawia przewód kabelkowy przeznaczony do układania w tynku. Tego typu przewód charakteryzuje się płaską konstrukcją oraz izolacją z PVC, co zapewnia odpowiednią ochronę przed wilgocią i uszkodzeniami mechanicznymi. W praktyce, przewody te są wykorzystywane w instalacjach elektrycznych w ścianach, gdzie ich umiejscowienie w tynku jest standardową praktyką, zapewniającą estetykę i bezpieczeństwo. Przewód z trzema żyłami, jak ten przedstawiony na rysunku A, zazwyczaj obejmuje fazę, zero oraz żyłę ochronną, co jest zgodne z normami PN-IEC 60364, które regulują zasady instalacji elektrycznych. Znajomość tych norm jest kluczowa dla profesjonalistów w dziedzinie elektryki, ponieważ gwarantuje, że instalacje będą funkcjonalne i spełnią wymagania bezpieczeństwa. Dobre praktyki branżowe zalecają również, aby przewody były układane w sposób, który minimalizuje narażenie na uszkodzenia, co czyni przewody kabelkowe idealnym rozwiązaniem do tego zastosowania.

Pytanie 27

Do ochrony obwodu przed przeciążeniem oraz zwarciem wykorzystuje się wyłącznik

A. współpracujący z bezpiecznikiem topikowym
B. współpracujący z przekaźnikiem sygnalizacyjnym
C. wyposażony w aparat różnicowoprądowy
D. współpracujący z przekaźnikiem czasowym
No więc, poprawna odpowiedź to wyłącznik, który działa razem z bezpiecznikiem topikowym. Jego głównym zadaniem jest ochrona obwodu przed przeciążeniem i zwarciem. Bezpieczniki topikowe to dość popularny element w instalacjach elektrycznych, bo automatycznie przerywają obwód, gdy prąd jest za duży. Jak prąd przekroczy ustaloną wartość, to topik się przepala i obwód się przerywa. To wszystko jest zgodne z normami bezpieczeństwa, np. PN-IEC 60898, które mówią, jak powinny działać zabezpieczenia elektryczne. Używanie takiego wyłącznika w połączeniu z bezpiecznikami topikowymi naprawdę zwiększa bezpieczeństwo i chroni różne urządzenia przed uszkodzeniem. W domach często można je spotkać w skrzynkach rozdzielczych, co daje dobrą ochronę przed możliwymi awariami. Pamiętaj też, że warto regularnie sprawdzać i wymieniać bezpieczniki, żeby cały system działał jak należy.

Pytanie 28

Którego przyrządu należy użyć do pomiarów rezystancji izolacji w instalacji elektrycznej?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Poprawna odpowiedź to D. Pomiar rezystancji izolacji w instalacjach elektrycznych jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności infrastruktury elektroenergetycznej. Do tego celu używa się megomierza, który umożliwia pomiar wysokich rezystancji, często w zakresie od miliona omów do miliarda omów. Wysoka rezystancja izolacji jest niezbędna, aby zapobiec niepożądanym upływom prądu, które mogą prowadzić do uszkodzeń sprzętu, pożarów lub porażeń elektrycznych. Zgodnie z normą PN-EN 61557, pomiar rezystancji izolacji powinien być wykonywany regularnie, zwłaszcza w instalacjach, które są narażone na działanie wilgoci lub chemikaliów. Przykładem praktycznego zastosowania megomierza jest kontrola instalacji w budynkach przemysłowych, gdzie niezawodność systemów elektrycznych jest kluczowa dla ciągłości produkcji. Użycie megomierza w takich przypadkach pozwala szybko identyfikować potencjalne problemy z izolacją, umożliwiając szybkie działanie w celu ich naprawy.

Pytanie 29

Jakie źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Świetlówkę kompaktową.
B. Lampę indukcyjną.
C. Lampę metalohalogenkową.
D. Żarówkę halogenową.
Świetlówka kompaktowa, przedstawiona na zdjęciu, charakteryzuje się unikalnym kształtem, który opiera się na zwiniętej rurze zawierającej gaz fluorescencyjny, co pozwala na efektywne generowanie światła. W przeciwieństwie do tradycyjnych żarówek, świetlówki kompaktowe oferują znacznie wyższą efektywność energetyczną, co przekłada się na dłuższy czas życia oraz niższe zużycie energii. Używane są powszechnie w domach oraz biurach jako odpowiednik standardowych żarówek, zwłaszcza w sytuacjach, gdy zależy nam na oszczędności energii. Dodatkowo, świetlówki kompaktowe są często stosowane w ogrodach i na zewnątrz budynków, ponieważ oferują wysoką jakość światła przy niskim poborze mocy. Warto również zauważyć, że ich ograniczona emisja ciepła sprawia, że są bezpieczniejsze w użytkowaniu, zwłaszcza w zamkniętych przestrzeniach. Zgodnie z normami energetycznymi, ich zastosowanie przyczynia się do zmniejszenia emisji dwutlenku węgla, co jest zgodne z globalnymi dążeniami do ochrony środowiska.

Pytanie 30

Na którym rysunku przedstawiono poprawny sposób podłączenia dwóch wyłączników RCD zgodnie ze schematem?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Schematy przedstawione w odpowiedziach A, B i D zawierają poważne błędy w podejściu do podłączania wyłączników RCD, które mogą prowadzić do niebezpieczeństw w eksploatacji instalacji elektrycznej. W przypadku odpowiedzi A, wyłączniki RCD są połączone w sposób, który nie oddziela obwodów, co narusza zasadę zapewnienia niezależnej ochrony. Taki układ może prowadzić do sytuacji, w której awaria w jednym obwodzie spowoduje wyłączenie zasilania w obu, co jest niepraktyczne i niebezpieczne. W odpowiedzi B, połączenie RCD nie zapewnia właściwego odseparowania obwodów, co jest kluczowe w lokalizacjach o zwiększonym ryzyku, jak łazienki. Odpowiedź D z kolei również nie spełnia wymagań dotyczących ochrony, ponieważ nie uwzględnia specyficznych potrzeb bezpieczeństwa w różnych pomieszczeniach. W każdej z tych odpowiedzi brak jest zrozumienia podstawowych zasad dotyczących ochrony przed porażeniem elektrycznym, co może prowadzić do poważnych konsekwencji zdrowotnych. W kontekście norm PN-IEC 61008, kluczowe jest, aby każdy obwód był chroniony oddzielnie, co nie tylko zwiększa bezpieczeństwo, ale także ułatwia identyfikację problemów w instalacji. Niezrozumienie tego aspektu prowadzi do błędnych wniosków i, co gorsza, do niebezpiecznych układów elektrycznych.

Pytanie 31

Schemat jakiego łącznika instalacyjnego przedstawiono na rysunku?

Ilustracja do pytania
A. Hotelowego.
B. Świecznikowego.
C. Schodowego.
D. Krzyżowego.
Schemat przedstawiony na rysunku to schemat łącznika krzyżowego, który jest kluczowym elementem w bardziej złożonych instalacjach oświetleniowych. Łącznik krzyżowy umożliwia sterowanie jednym obwodem świetlnym z więcej niż dwóch miejsc, co jest szczególnie przydatne w dużych pomieszczeniach, korytarzach czy schodach. Wykorzystuje się go w połączeniu z łącznikami schodowymi, dzięki czemu można włączać i wyłączać światło w różnych punktach budynku. Schemat łącznika krzyżowego charakteryzuje się czterema zaciskami: dwa zaciski wejściowe i dwa wyjściowe. Taki układ pozwala na swobodne przełączanie prądu między różnymi obwodami, co zwiększa elastyczność instalacji. Zgodnie z dobrymi praktykami branżowymi, instalacje elektryczne powinny być projektowane z myślą o wygodzie użytkowników, a zastosowanie łącznika krzyżowego stanowi doskonały przykład tego podejścia. Warto również pamiętać, że poprawne zainstalowanie łącznika krzyżowego wymaga odpowiedniego przeszkolenia, aby zapewnić bezpieczeństwo i trwałość instalacji.

Pytanie 32

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy w schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. Symbolem 2.
B. Symbolem 4.
C. Symbolem 1.
D. Symbolem 3.
Wybór innego symbolu na ilustracji zamiast symbolu 4 może prowadzić do poważnych nieporozumień w kontekście schematów ideowych instalacji elektrycznych. Każdy symbol graficzny w schemacie ma swoje ściśle określone znaczenie, zgodnie z normami branżowymi, takimi jak PN-EN 60617, które regulują stosowanie symboli w dokumentacji technicznej. Oznaczając łącznik świecznikowy nieodpowiednim symbolem, można spowodować, że osoby odpowiedzialne za instalację lub konserwację łatwo będą mogły zidentyfikować elementy systemu, co może prowadzić do błędów w montażu lub naprawach. Przykładowo, niepoprawne oznaczenie łącznika jako zwykłego wyłącznika może skutkować jego nieprawidłową funkcjonalnością i brakiem możliwości regulacji natężenia oświetlenia. Takie mylne podejście do symboliki w instalacjach elektrycznych często wynika z braku znajomości standardów lub nieuwagi przy analizie schematów, co podkreśla znaczenie dokładnego przeszkolenia w zakresie czytania i interpretacji dokumentacji technicznej. W praktyce, stosowanie niewłaściwych symboli może również narażać użytkowników na ryzyko związane z niewłaściwym działaniem instalacji, co w skrajnych przypadkach może prowadzić do awarii czy incydentów elektrycznych.

Pytanie 33

Jakie parametry ma wyłącznik różnicowoprądowy, zastosowany w instalacji zasilającej mieszkanie, której schemat ideowy przedstawiono na rysunku?

Ilustracja do pytania
A. Prąd znamionowy 25 A i prąd znamionowy różnicowy 30 mA
B. Prąd znamionowy 30 mA i prąd znamionowy różnicowy 25 A
C. Prąd znamionowy 16 A oraz charakterystykę B
D. Prąd znamionowy 10 A oraz charakterystykę B
Wyłącznik różnicowoprądowy z parametrami, jak prąd znamionowy 25 A i prąd różnicowy 30 mA, to naprawdę ważny element w zabezpieczaniu elektryki w mieszkaniach. Prąd znamionowy 25 A mówi nam, ile maksymalnie może on przenieść, co jest kluczowe, bo musimy myśleć o zasilaniu domowych sprzętów. Z kolei prąd różnicowy 30 mA to wartość, która bardzo dobrze chroni przed porażeniem, bo jak zauważy różnicę w prądzie, to odetnie zasilanie. Te wartości są zgodne z normami PN-EN 61008-1 i PN-EN 60947-2, które mówią, jak powinny być projektowane wyłączniki. Używając takich parametrów, zapewniamy bezpieczeństwo i ochronę przed ewentualnymi awariami. Fajnie jest także regularnie sprawdzać wyłączniki różnicowoprądowe, żeby mieć pewność, że działają, a można to łatwo zrobić przyciskiem testowym, który jest na każdym z tych urządzeń.

Pytanie 34

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Napina sprężynę napędu
B. Zatrzymuje łuk elektryczny
C. Rozpoznaje przeciążenia
D. Rozpoznaje zwarcia
Wyzwalacz elektromagnetyczny w wyłączniku nadprądowym odgrywa kluczową rolę w systemach zabezpieczeń elektrycznych, szczególnie w detekcji zwarć. Działa na zasadzie natychmiastowego reagowania na nagły wzrost prądu, co jest charakterystyczne dla sytuacji zwarciowych. Gdy prąd przekracza ustaloną wartość progową, wyzwalacz elektromagnetyczny generuje siłę, która otwiera obwód, przerywając tym samym przepływ prądu. To działanie jest niezwykle istotne, ponieważ pozwala na szybkie odcięcie zasilania, co chroni urządzenia i instalacje przed uszkodzeniami spowodowanymi nadmiernym prądem. W praktyce, wyzwalacze elektromagnetyczne są szeroko stosowane w obiektach przemysłowych, budynkach mieszkalnych oraz w instalacjach komercyjnych do zapewnienia bezpieczeństwa. Zgodnie z normami IEC 60947-2, które regulują wyłączniki niskonapięciowe, właściwe działanie wyzwalacza elektromagnetycznego jest kluczowe dla zapewnienia skutecznej ochrony. Warto zauważyć, że stosowanie wyłączników z odpowiednio dobranymi wyzwalaczami, uwzględniając charakterystykę obciążenia, jest najlepszą praktyką w branży elektrycznej.

Pytanie 35

W której ze stref wskazanych na rysunku należy zainstalować łącznik oświetlenia głównego pomieszczenia?

Ilustracja do pytania
A. SH-s (1)
B. SP-d (1)
C. SP-d (2)
D. SH-s (2)
Odpowiedź SP-d (2) jest poprawna, ponieważ zgodnie z normami budowlanymi w Polsce, łącznik oświetlenia głównego powinien być zainstalowany w łatwo dostępnym miejscu, zazwyczaj w pobliżu drzwi wejściowych do pomieszczenia. Umieszczenie łącznika w strefie SP-d (2) jest zgodne z zaleceniami dotyczącymi ergonomii i użyteczności, co pozwala użytkownikom na wygodne włączanie i wyłączanie światła od razu po wejściu do pomieszczenia. W przypadku strefy SP-d (2), łącznik znajduje się po prawej stronie drzwi, co jest standardowym rozwiązaniem w projektowaniu wnętrz, ułatwiającym dostęp do oświetlenia. Taki układ zwiększa komfort użytkowania oraz zapewnia większe bezpieczeństwo, gdyż pozwala na szybkie oświetlenie pomieszczenia, eliminując ryzyko potknięcia się w ciemności. Dobrą praktyką jest także umieszczanie łączników na odpowiedniej wysokości, co dodatkowo zwiększa ich funkcjonalność. Zastosowanie się do tych norm jest kluczowe w każdym projekcie budowlanym, aby zapewnić optymalne warunki użytkowania oraz zgodność z przepisami prawa budowlanego.

Pytanie 36

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. montażu nowych punktów świetlnych
B. czyszczenia lamp oświetleniowych
C. wymiany gniazd zasilających
D. czyszczenia urządzeń w rozdzielniach
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 37

Który z wymienionych zestyków pomocniczych układu przedstawionego na schemacie uległ uszkodzeniu, skoro nie da się załączyć stycznika Q2?

Ilustracja do pytania
A. NC stycznika Q1
B. NO stycznika Q1
C. NO stycznika Q2
D. NC stycznika Q2
Odpowiedź "NC stycznika Q1" jest poprawna ponieważ w analizowanym układzie stycznik Q2 jest sterowany zarówno poprzez przycisk S4, jak i przez styk NO stycznika Q1. Aby styk NO stycznika Q1 mógł się zamknąć, musi być on w pozycji normalnie otwartej, co oznacza, że wcześniej musiał być aktywowany przez inny element obwodu. Jeśli stycznik Q1 jest uszkodzony, a jego styk NC (normalnie zamknięty) nie przełącza się na NO, to obwód zasilający stycznik Q2 nie zostanie zamknięty. W praktyce w takich układach automatyki przemysłowej, często zdarza się, że awarie styków w układach sterowania prowadzą do niemożności uruchomienia dalszych procesów, dlatego istotne jest systematyczne monitorowanie stanu tych elementów. Zgodnie z dobrymi praktykami, należy przeprowadzać regularne przeglądy i testy funkcjonalne takich obwodów, aby zapobiegać nieprzewidzianym zatrzymaniom. Zrozumienie działania styków oraz ich wpływu na całość układu jest kluczowe dla efektywnej diagnostyki i utrzymania ruchu w systemach automatyki.

Pytanie 38

Który zestaw narzędzi, oprócz przymiaru kreskowego i młotka należy wybrać do montażu instalacji natynkowej w rurach PCV?

Nóż monterski
Poziomnica
Wkrętarka
Obcinaczki
Wiertarka
Nóż monterski
Piłka do cięcia
Wkrętak
Obcinaczki
Wiertarka
Cęgi do izolacji
Poziomnica
Wkrętarka
Obcinaczki
Lutownica
Cęgi do izolacji
Poziomnica
Wkrętarka
Płaskoszczypcy
Wiertarka
A.B.C.D.
A. C.
B. B.
C. A.
D. D.
Wybór zestawu B jako odpowiedzi prawidłowej jest uzasadniony, ponieważ do montażu instalacji natynkowej w rurach PCV niezbędne są odpowiednie narzędzia do cięcia, łączenia i mocowania rur. Zestaw B zawiera piłkę do cięcia, która jest kluczowa do precyzyjnego przycinania rur PCV do wymaganej długości. Przykładowo, podczas instalacji rur konieczne jest dostosowanie ich długości do wymagań konkretnego projektu, a użycie odpowiedniej piły zapewnia czyste i równomierne krawędzie, co jest istotne dla prawidłowego montażu. Dodatkowo, zestaw ten zawiera wkrętak, który jest niezbędny do mocowania uchwytów lub innych elementów instalacji oraz obcinaczki, które są pomocne w precyzyjnym łączeniu elementów rur. W praktyce, stosując zestaw B, można zrealizować projekt zgodnie z najlepszymi praktykami w branży, które podkreślają znaczenie użycia odpowiednich narzędzi dla uzyskania trwałej i bezpiecznej instalacji. Warto również pamiętać o standardach dotyczących montażu instalacji elektrycznych, które wymagają odpowiednich narzędzi i technik, aby zapewnić bezpieczeństwo i efektywność działania systemu.

Pytanie 39

W instalacji domowej jako dodatkowy element zabezpieczający przed porażeniem prądem powinno się użyć wyłącznika różnicowoprądowego o wartościach prądu różnicowego

A. 30 mA
B. 10 mA
C. 100 mA
D. 300 mA
Wyłącznik różnicowoprądowy z prądem różnicowym 30 mA to coś, co naprawdę warto mieć w elektrycznych instalacjach w naszych domach. Jego główną rolą jest ochrona osób przed porażeniem prądem, szczególnie gdy zdarzy się jakieś uszkodzenie, które może prowadzić do groźnych sytuacji. Prąd różnicowy 30 mA jest uznawany za najlepszy w miejscach, gdzie może być ryzyko kontaktu z wodą, jak łazienki czy kuchnie. Dzięki temu wyłącznikowi system szybko reaguje i odcina prąd w czasie krótszym niż 30 ms, co w praktyce oznacza, że w przypadku porażenia prądem, osoba ma większe szanse na przeżycie. Po prostu wyłącznik zadziała tak szybko, że może uratować życie. W dodatku zgodnie z normą PN-IEC 61008, stosowanie tych wyłączników o prądzie 30 mA w budynkach mieszkalnych to naprawdę dobry standard bezpieczeństwa. Gdzieś, gdzie ryzyko jest jeszcze większe, jak basen czy sauna, warto otworzyć się na wyłączniki o prądzie 10 mA, bo zapewniają one jeszcze lepszą ochronę.

Pytanie 40

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Aluminium
B. Brąz
C. Miedź
D. Stal
Stal jest najlepszym przewodnikiem strumienia magnetycznego spośród wymienionych materiałów, ponieważ ma znacznie wyższą permeabilność w porównaniu do innych wymienionych metali. Permeabilność odnosi się do zdolności materiału do przewodzenia pola magnetycznego, co czyni stal idealnym materiałem do zastosowań w elektrotechnice, takich jak rdzenie transformatorów czy elektromagnesy. W konstrukcjach takich jak silniki elektryczne czy generatory, stal jest powszechnie stosowana ze względu na swoją zdolność do zwiększania efektywności działania poprzez skoncentrowanie strumienia magnetycznego. W praktyce, użycie stali w takich aplikacjach pozwala na mniejsze straty energii oraz poprawia wydajność urządzeń. Warto również zaznaczyć, że stal można łatwo poddawać obróbce, co umożliwia produkcję różnych kształtów rdzeni, co jest istotne w projektowaniu urządzeń elektronicznych. Zgodność z normami, takimi jak IEC, w zakresie materiałów magnetycznych, podkreśla znaczenie stali w branży elektrotechnicznej, gdzie standardy jakości i wydajności są kluczowe.