Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 21 lutego 2026 20:47
  • Data zakończenia: 21 lutego 2026 20:59

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Którą kość zaznaczono strzałką na radiogramie stopy?

Ilustracja do pytania
A. Kość klinowatą boczną.
B. Kość skokową.
C. Kość sześcienną.
D. Kość łódkowatą.
Na radiogramie stopy w projekcji AP strzałka wskazuje kość sześcienną, czyli jedną z kości stępu położoną po stronie bocznej. Kość sześcienna leży dystalnie w stosunku do kości piętowej, a proksymalnie do IV i V kości śródstopia, częściowo także sąsiaduje z III kością śródstopia. Od strony przyśrodkowej łączy się z kością klinowatą boczną oraz z kością łódkowatą. Na prawidłowo wykonanym RTG łatwo ją zlokalizować właśnie jako boczną kość stępu, tworzącą jakby „kostkę” pomiędzy piętą a bocznymi kośćmi śródstopia. Moim zdaniem kluczowe jest tu świadome „czytanie” obrazu: zaczynamy od kości piętowej, idziemy dystalnie po stronie bocznej i pierwsza wyraźna kość stępu przed piętą to właśnie kość sześcienna. W praktyce technika radiologii często musi ocenić tę kość pod kątem złamań zmęczeniowych, urazów w obrębie stawu Choparta, a także przy deformacjach stopy, np. w stopie końsko‑szpotawej. W dobrych praktykach opisowych zwraca się uwagę na ciągłość zarysów korowych kości, szerokość szpar stawowych z sąsiednimi kośćmi śródstopia oraz ewentualne odłamy awulsyjne przy przyczepach więzadeł. W badaniach kontrolnych po unieruchomieniu gipsowym technik powinien zadbać o identyczne lub bardzo zbliżone pozycjonowanie, żeby lekarz mógł wiarygodnie porównać zrost w obrębie kości sześciennej. To z pozoru mała kość, ale w biomechanice stopy odgrywa dość istotną rolę, stabilizując boczny filar stopy i przenosząc obciążenia przy chodzeniu i bieganiu.

Pytanie 2

Pozytywny środek cieniujący najczęściej stosowany w rentgenodiagnostyce powinien charakteryzować się

A. niską hydrofilnością.
B. wysoką lipofilnością.
C. niską osmolalnością.
D. wysoką lepkością.
Prawidłowa odpowiedź to niska osmolalność, bo właśnie ten parametr w praktyce najbardziej decyduje o bezpieczeństwie pozytywnych środków cieniujących stosowanych w rentgenodiagnostyce (np. w TK, urografii, angiografii). Środki kontrastowe o wysokiej osmolalności mocno „ściągają” wodę z komórek i przestrzeni śródmiąższowej do światła naczyń. To powoduje nagłe zwiększenie objętości osocza, obciążenie układu krążenia, ryzyko nudności, wymiotów, bólów głowy, a nawet zaburzeń hemodynamicznych. Dlatego we współczesnych standardach radiologicznych preferuje się środki niskoosmolalne lub izoosmolalne względem osocza. Z mojego doświadczenia to jest jedna z pierwszych rzeczy, na które zwraca się uwagę przy doborze kontrastu u pacjentów z niewydolnością nerek, niewydolnością krążenia czy u osób starszych. Niższa osmolalność oznacza mniejsze ryzyko nefrotoksyczności kontrastowej (CIN), mniejsze ryzyko bólu przy podaniu dotętniczym oraz ogólnie lepszą tolerancję. W praktyce w pracowniach TK czy angiografii używa się głównie nowoczesnych jodowych środków niskoosmolalnych, niejonowych, które są dobrze rozpuszczalne w wodzie (wysoka hydrofilność), łatwo wydalane przez nerki i mają dobry profil bezpieczeństwa. Wysoka lepkość jest raczej niepożądana, bo utrudnia przepływ środka przez cienkie cewniki i może powodować większy opór przy wstrzykiwaniu. Z kolei wysoka lipofilność nie jest cechą pożądaną dla kontrastów dożyl­nych – środek powinien być hydrofilny, żeby swobodnie krążyć w osoczu i być szybko wydalony. Tak więc w praktyce klinicznej niska osmolalność to absolutna podstawa przy wyborze dobrego, nowoczesnego środka cieniującego.

Pytanie 3

Celem radioterapii paliatywnej nie jest

A. zmniejszenie dolegliwości bólowych.
B. trwałe wyleczenie.
C. zahamowanie procesu nowotworowego.
D. przedłużenie życia.
Prawidłowo wskazana odpowiedź „trwałe wyleczenie” dobrze oddaje sens radioterapii paliatywnej. Napromienianie paliatywne stosuje się u chorych, u których nowotwór jest najczęściej uogólniony, nieoperacyjny albo bardzo zaawansowany miejscowo i szanse na całkowite wyleczenie są znikome. Celem takiego leczenia nie jest więc radykalne usunięcie choroby, tylko poprawa jakości życia pacjenta. W praktyce oznacza to głównie zmniejszenie dolegliwości bólowych, redukcję krwawień z guza, zmniejszenie duszności przy naciekach na płuca czy oskrzela, a także zapobieganie powikłaniom, takim jak złamania patologiczne w przerzutach do kości czy ucisk na rdzeń kręgowy. Typowe są krótsze schematy frakcjonowania (np. 8 Gy jednorazowo, 5×4 Gy, 10×3 Gy), bo liczy się szybki efekt objawowy, a nie maksymalne „dobicie” guza. Standardy i wytyczne (np. ESMO, ESTRO) podkreślają, że w paliacji akceptuje się pewien stopień progresji choroby, o ile pacjent ma mniej objawów i funkcjonuje lepiej w życiu codziennym. Dlatego pozostałe odpowiedzi – przedłużenie życia, łagodzenie bólu i częściowe zahamowanie procesu nowotworowego – jak najbardziej mieszczą się w realnych, praktycznych celach radioterapii paliatywnej. Moim zdaniem ważne jest, żeby zawsze pamiętać o rozmowie z pacjentem: jasno tłumaczymy, że nie „wyleczymy” nowotworu, ale możemy sprawić, że będzie mniej boleć, łatwiej będzie się poruszać i ogólnie komfort życia się poprawi, czasem nawet na dłuższy okres niż wszyscy się spodziewają.

Pytanie 4

Zdjęcie którego zęba górnego zlecił na skierowaniu lekarz stomatolog?

Ilustracja do pytania
A. Lewego przedtrzonowego drugiego.
B. Prawego przedtrzonowego drugiego.
C. Prawego trzonowego pierwszego.
D. Lewego trzonowego pierwszego.
Na skierowaniu widnieje symbol „6” umieszczony w górnym kwadrancie schematu zębowego, co zgodnie z międzynarodowym systemem FDI oraz powszechnie stosowanymi schematami w stomatologii oznacza pierwszy ząb trzonowy w danym łuku. Położenie cyfry nad linią poziomą wskazuje szczękę (łuk górny), a po jej lewej stronie – lewą stronę pacjenta. Czyli patrzymy zawsze z perspektywy pacjenta, a nie osoby opisującej zdjęcie. W efekcie zapis odpowiada lewemu pierwszemu trzonowcowi w szczęce, czyli odpowiedzi: lewego trzonowego pierwszego. Moim zdaniem to jedno z podstawowych oznaczeń, które trzeba mieć „w ręku”, bo w praktyce pracowni RTG takie symbole pojawiają się na skierowaniach bardzo często, zwłaszcza od stomatologów, którzy używają uproszczonych schematów zębowych. W codziennej pracy technika elektroradiologii poprawne rozpoznanie oznaczenia zęba ma znaczenie praktyczne: ustawiamy pacjenta tak, aby interesujący ząb znalazł się w optymalnym polu promieniowania, dobieramy odpowiednią kasetę lub sensor, sprawdzamy kolimację wiązki oraz projekcję (np. zdjęcie zębowe, skrzydłowo‑zębowe czy pantomogram). Dodatkowo prawidłowe odczytanie strony (prawej/lewej) jest elementem dobrej praktyki i bezpieczeństwa pacjenta, dokładnie tak jak przy oznaczaniu projekcji w zdjęciach kości czy klatki piersiowej. Błąd strony przy zębach może skutkować powtórnym naświetlaniem, a więc niepotrzebnym zwiększeniem dawki. Dlatego w standardach jakości i procedurach pracownianych kładzie się nacisk na dokładne sprawdzenie skierowania, schematu zębowego i porównanie z jamą ustną pacjenta przed ekspozycją.

Pytanie 5

Na obrazie TK klatki piersiowej w przekroju poprzecznym strzałką oznaczono

Ilustracja do pytania
A. oskrzele główne lewe.
B. oskrzele główne prawe.
C. aortę zstępującą.
D. aortę wstępującą.
Na przedstawionym przekroju poprzecznym TK klatki piersiowej strzałka wskazuje lewe oskrzele główne. W tomografii pamiętamy, że obrazy standardowo oglądamy w tzw. projekcji radiologicznej: tak jakby pacjent leżał na plecach, a my patrzymy od jego stóp w stronę głowy. Czyli prawa strona pacjenta jest po lewej stronie ekranu (oznaczona literą R), a lewa strona pacjenta – po prawej. To jest pierwszy klucz do poprawnego rozpoznawania struktur anatomicznych na TK. Lewe oskrzele główne odchodzi od tchawicy bardziej poziomo, jest dłuższe i przebiega pod łukiem aorty, kierując się w stronę lewego wnęki płuca. Na obrazie widać je jako strukturę o powietrznej gęstości (ciemną), otoczoną cienką ścianą, zlokalizowaną po stronie przeciwnej do oznaczenia R, tuż przy rozwidleniu tchawicy. Z mojego doświadczenia to jedno z klasycznych miejsc, które każdy technik i lekarz musi umieć „z marszu” zidentyfikować, bo od poprawnej orientacji w okolicy wnęk płucnych zależy m.in. prawidłowe ocenianie węzłów chłonnych śródpiersia, zmian nowotworowych czy ocena szerzenia się procesu zapalnego. W praktyce klinicznej, przy planowaniu bronchoskopii, zabiegów torakochirurgicznych albo przy ocenie naciekania guza płuca na oskrzele, dokładna znajomość przebiegu lewego oskrzela głównego jest absolutnie podstawowa. Dobre praktyki w diagnostyce obrazowej mówią, żeby zawsze zaczynać analizę TK klatki od ustalenia orientacji (R/L, przód/tył), potem identyfikować główne naczynia (aorta wstępująca, łuk, aorta zstępująca, pień płucny) i dopiero na tym tle lokalizować tchawicę i oskrzela. Dzięki temu dużo łatwiej odróżnić lewe oskrzele główne od struktur naczyniowych czy od prawego oskrzela, które jest krótsze, szersze i bardziej pionowe. W praktyce egzaminacyjnej takie zadania bardzo dobrze sprawdzają, czy ktoś naprawdę rozumie anatomię w obrazowaniu, a nie tylko „zgaduje z kształtu”.

Pytanie 6

Chorobą układu oddechowego typu obturacyjnego jest

A. gruźlica płuc.
B. sarkoidoza.
C. pylica płuc.
D. mukowiscydoza.
Prawidłowo wskazana została mukowiscydoza, bo jest to klasyczny przykład przewlekłej choroby obturacyjnej układu oddechowego. W mukowiscydozie dochodzi do zaburzenia transportu jonów chlorkowych w nabłonku, co powoduje bardzo gęsty, lepki śluz w drogach oddechowych. Taki śluz zatyka małe i większe oskrzela, co w praktyce daje obturację, czyli utrudnienie przepływu powietrza, zwłaszcza przy wydechu. W badaniu spirometrycznym widzimy typowy obraz choroby obturacyjnej: obniżone FEV1, obniżony wskaźnik FEV1/FVC, często też wydłużony czas wydechu. W praktyce klinicznej i fizjoterapeutycznej takie rozpoznanie ma konkretne konsekwencje: stosuje się techniki drenażu ułożeniowego, oklepywanie klatki piersiowej, ćwiczenia oddechowe ukierunkowane na poprawę ewakuacji wydzieliny i wentylacji płuc. Standardy postępowania (również polskie i europejskie zalecenia dla mukowiscydozy) mocno podkreślają regularną ocenę czynności płuc właśnie spirometrią, co pozwala wcześnie wychwycić pogorszenie obturacji. Z mojego doświadczenia, jeśli ktoś raz dobrze zrozumie różnicę między obturacją a restrykcją, dużo łatwiej mu później klasyfikować choroby płuc. Obturacja to problem głównie z przepływem powietrza przez zwężone drogi oddechowe, jak w astmie, POChP czy właśnie mukowiscydozie. Warto też pamiętać, że na zdjęciu RTG czy w TK w zaawansowanej mukowiscydozie widoczne są zmiany odpowiadające przewlekłej obturacji, np. rozstrzenie oskrzeli, pułapka powietrzna, co ładnie koreluje z wynikiem spirometrii i objawami pacjenta w badaniu przedmiotowym.

Pytanie 7

W audiometrii badanie polegające na maskowaniu (zagłuszaniu) tonów szumem białym to próba

A. Rinnego.
B. Langenbecka.
C. Webera.
D. Fowlera.
Prawidłowa odpowiedź to próba Langenbecka, bo właśnie z nią wiąże się maskowanie tonów szumem białym w badaniach słuchu. W audiometrii maskowanie polega na tym, że do ucha „niemierzonego” podaje się szum (najczęściej biały albo wąskopasmowy), żeby odciąć jego udział w teście i uzyskać wiarygodny próg słyszenia ucha badanego. Próba Langenbecka to klasyczny test, w którym ocenia się zachowanie progu słyszenia przy jednoczesnym podawaniu szumu maskującego. W praktyce klinicznej jest to szczególnie ważne u pacjentów z asymetrycznym ubytkiem słuchu, jednostronnym niedosłuchem przewodzeniowym albo gdy podejrzewamy tzw. cross-hearing, czyli przewodzenie dźwięku na drugą stronę przez kości czaszki. Bez poprawnego maskowania wyniki audiogramu mogą być całkowicie mylące – np. wydaje się, że lepsze ucho słyszy gorzej, a w rzeczywistości przejmuje bodziec przeznaczony dla ucha gorszego. Standardy audiometrii tonalnej (zarówno w laryngologii, jak i w protetyce słuchu) zakładają obowiązkowe stosowanie maskowania w określonych sytuacjach, według ustalonych schematów (np. maskowanie przy różnicy przewodnictwa powietrznego powyżej 40 dB między uszami). Z mojego doświadczenia, kto raz dobrze zrozumie ideę próby Langenbecka i ogólnie maskowania, temu dużo łatwiej później interpretować skomplikowane audiogramy mieszane, szukać tzw. rezerwy ślimakowej i planować dobór aparatów słuchowych czy wskazania do leczenia operacyjnego (np. otoskleroza).

Pytanie 8

W medycynie nuklearnej wykorzystuje się:

A. emisyjną tomografię, EEG, scyntygraf.
B. gammakamerę, PET, USG i scyntygraf.
C. scyntygraf, gammakamerę, emisyjną tomografię i PET.
D. ultrasonograf, scyntygraf i EMG.
Prawidłowo wskazałeś zestaw aparatury typowej dla medycyny nuklearnej: scyntygraf, gammakamera, emisyjna tomografia i PET. Wszystkie te urządzenia mają jedną wspólną cechę – rejestrują promieniowanie emitowane z wnętrza ciała pacjenta po podaniu radiofarmaceutyku. To właśnie odróżnia medycynę nuklearną od klasycznej radiologii, gdzie źródło promieniowania jest na zewnątrz (np. lampa rentgenowska). Scyntygraf i gammakamera to w praktyce nazwy bliskoznaczne – gammakamera jest współczesnym urządzeniem rejestrującym promieniowanie gamma i tworzącym obrazy scyntygraficzne. Wykorzystuje się ją np. w scyntygrafii kości, tarczycy, perfuzji mięśnia sercowego. Emisyjna tomografia (SPECT – tomografia emisyjna pojedynczych fotonów) pozwala uzyskać obrazy przekrojowe, podobnie jak tomografia komputerowa, ale pokazuje głównie funkcję narządu, a nie tylko jego budowę. Dzięki temu można ocenić perfuzję mózgu, żywotność mięśnia sercowego czy czynność nerek. PET, czyli pozytonowa tomografia emisyjna, wykorzystuje radioizotopy emitujące pozytony i zjawisko anihilacji. Standardowo stosuje się np. 18F-FDG do oceny metabolizmu glukozy w onkologii, kardiologii czy neurologii. W nowoczesnych pracowniach łączy się PET z CT lub MR (PET/CT, PET/MR), co pozwala na bardzo dokładne połączenie informacji funkcjonalnej z anatomiczną. Z mojego doświadczenia to właśnie zrozumienie, że medycyna nuklearna bada przede wszystkim funkcję i metabolizm, a nie samą anatomię, bardzo pomaga w zapamiętaniu, jakie urządzenia do niej należą. W dobrych praktykach ważne jest też prawidłowe przygotowanie radiofarmaceutyku, kontrola jakości aparatury oraz ścisłe przestrzeganie zasad ochrony radiologicznej, bo pracujemy z promieniowaniem jonizującym podanym do organizmu pacjenta.

Pytanie 9

Który załamek odzwierciedla repolaryzację komór w zapisie EKG?

A. P
B. Q
C. T
D. R
Prawidłowa odpowiedź to załamek T, bo właśnie on odzwierciedla repolaryzację komór w standardowym 12‑odprowadzeniowym EKG. Mówiąc prościej: depolaryzacja komór to zespół QRS, a powrót ich błony komórkowej do stanu wyjściowego (czyli repolaryzacja) zapisuje się jako załamek T. W praktyce klinicznej obserwacja kształtu, wysokości i kierunku załamka T jest kluczowa np. w rozpoznawaniu niedokrwienia mięśnia sercowego, zawału, zaburzeń elektrolitowych (zwłaszcza potasu i wapnia) czy działań niepożądanych niektórych leków, np. antyarytmicznych. W dobrych standardach opisu EKG zawsze ocenia się załamki P, zespół QRS, odcinek ST i załamek T – nie można go pomijać, bo często to właśnie subtelna zmiana T jest pierwszym sygnałem, że coś jest nie tak. Moim zdaniem, jeżeli ktoś chce dobrze ogarniać EKG w praktyce, powinien wyrobić sobie nawyk porównywania załamka T w poszczególnych odprowadzeniach, zwracając uwagę czy jest symetryczny, czy spłaszczony, czy odwrócony. W ratownictwie medycznym czy na oddziale intensywnej terapii szybkie wychwycenie wysokich, ostro zakończonych załamków T może sugerować hiperkaliemię, co jest potencjalnie stanem zagrożenia życia. Z kolei głębokie, ujemne załamki T w odprowadzeniach przedsercowych mogą wskazywać na świeże niedokrwienie lub tzw. zespół Wellensa. W technice diagnostyki elektromedycznej ważne jest też, żeby pamiętać, że artefakty, złe przyleganie elektrod czy napięcie mięśni pacjenta mogą zniekształcać załamek T, dlatego zawsze warto oceniać EKG w kontekście klinicznym i jakości zapisu, zgodnie z obowiązującymi standardami opisów EKG.

Pytanie 10

Podczas teleradioterapii piersi lewej narządem krytycznym jest

A. trzustka.
B. nerka.
C. serce.
D. wątroba.
Prawidłowo wskazano serce jako narząd krytyczny podczas teleradioterapii piersi lewej. W planowaniu radioterapii pojęcie „narząd krytyczny” oznacza strukturę, której przekroczenie dawki tolerancji może prowadzić do poważnych, często nieodwracalnych powikłań. W napromienianiu piersi lewej serce znajduje się bardzo blisko objętości tarczowej, szczególnie jego przednie ściany, koniuszek i gałąź międzykomorowa przednia. Dlatego w standardach planowania (np. wytyczne ESTRO, QUANTEC) ustala się konkretne ograniczenia dawki dla serca i tętnic wieńcowych, np. średnia dawka dla serca Dmean < 4–5 Gy, ograniczenie objętości serca otrzymującej 20 Gy (V20), a w nowocześniejszych planach także ograniczenia dla lewej tętnicy zstępującej (LAD). Z mojego doświadczenia to jest jeden z kluczowych tematów na praktykach w radioterapii: fizyk i lekarz bardzo dokładnie oglądają rozkład izodoz w okolicy serca i płuca lewego, bo to właśnie tam najłatwiej „przestrzelić” dopuszczalne wartości. W praktyce klinicznej stosuje się różne techniki, żeby serce jak najbardziej oszczędzić: pozycja na brzuchu (prone), technika DIBH (głębokiego wdechu z zatrzymaniem oddechu), IMRT/VMAT czy odpowiedni dobór kątów pól w klasycznej 3D-CRT. Podczas głębokiego wdechu klatka piersiowa się powiększa, serce oddala się od ściany klatki i dzięki temu dawka na serce spada, co ma realny wpływ na zmniejszenie ryzyka późnej kardiotoksyczności, np. choroby wieńcowej, niewydolności serca, zaburzeń rytmu. W dobrych ośrodkach radioterapii kontrola dawki na serce jest traktowana jako standard jakości planu, a nie tylko „dodatek”, bo pacjentka ma żyć wiele lat po zakończeniu leczenia i nie ma sensu leczyć raka, a jednocześnie powoli uszkadzać serce.

Pytanie 11

W celu wyeliminowania zakłóceń obrazu MR przez sygnały pochodzące z tkanki tłuszczowej, stosuje się

A. sekwencje STIR.
B. obrazowanie PD – zależne.
C. sekwencje FLAIR.
D. obrazowanie T1 – zależne.
W obrazowaniu MR łatwo się pomylić, bo wiele sekwencji daje obrazy pozornie podobne, ale ich zadanie jest zupełnie inne. W tym pytaniu kluczowe jest rozumienie, że wyeliminowanie sygnału z tkanki tłuszczowej wymaga specjalnej techniki tłumienia tłuszczu, a nie tylko zmiany typu kontrastu (T1, T2, PD). Obrazowanie PD-zależne (proton density) koncentruje się głównie na różnicach w gęstości protonowej tkanek. Tłuszcz w takich sekwencjach zwykle nadal świeci dość jasno, bo ma wysoką gęstość protonów i stosunkowo krótki T1, więc jego sygnał nie jest ani tłumiony, ani selektywnie wygaszany. W praktyce PD używa się często w obrazowaniu stawów, ale dopiero w połączeniu z technikami fat-sat daje dobrą separację struktur. Obrazowanie T1-zależne kojarzy się wielu osobom z jasnym sygnałem z tłuszczu, i to jest właśnie odwrotność tego, o co chodzi w pytaniu. W sekwencjach T1-weighted tłuszcz jest z reguły bardzo jasny, co jest wykorzystywane do oceny anatomii, zawartości tłuszczu, patologii szpiku kostnego czy badania po kontraście gadolinowym. Samo przejście na sekwencję T1 nie usuwa zakłóceń od tłuszczu, tylko je wręcz podkreśla. To typowy błąd myślowy: „skoro tłuszcz jest wyraźny, to łatwiej go odróżnię”, ale pytanie dotyczy tłumienia jego sygnału, a nie lepszego zobaczenia. Sekwencje FLAIR to inna pułapka. FLAIR jest odmianą sekwencji T2-zależnej z inwersją, ale jej celem jest tłumienie sygnału z płynu mózgowo-rdzeniowego, a nie z tłuszczu. W neuroobrazowaniu FLAIR jest standardem do wykrywania zmian demielinizacyjnych, zapalnych czy niedokrwiennych przy komorach, bo CSF jest ciemny, a zmiany patologiczne w istocie białej pozostają jasne. Mechanizm fizyczny (inversion recovery) jest podobny jak w STIR, ale punkt „wyzerowania” ustawia się na T1 płynu, nie tłuszczu. Dlatego wybór FLAIR jako sekwencji do tłumienia tłuszczu jest merytorycznie błędny. Sedno sprawy jest takie: tylko sekwencje STIR są zaprojektowane tak, by dzięki odpowiednio dobranemu czasowi TI wyzerować sygnał z tłuszczu. Pozostałe odpowiedzi opisują sekwencje o innym przeznaczeniu, które bez dodatkowych technik fat-sat nie usuwają sygnału z tkanki tłuszczowej, a często wręcz go wzmacniają. W praktyce klinicznej zawsze warto pamiętać, co dokładnie dana sekwencja tłumi: STIR – tłuszcz, FLAIR – płyn, T1/PD – żadnego konkretnego komponentu, tylko ustawiają inny typ kontrastu między tkankami.

Pytanie 12

Co określa M₀ w systemie klasyfikacji nowotworów TNM?

A. Nie można ocenić obecności przerzutów odległych.
B. Nie stwierdza się przerzutów w regionalnych węzłach chłonnych.
C. Nie można ocenić regionalnych węzłów chłonnych.
D. Nie stwierdza się przerzutów odległych.
Prawidłowo – symbol M₀ w klasyfikacji TNM oznacza, że nie stwierdza się przerzutów odległych. W systemie TNM mamy trzy główne składowe: T (tumor) opisuje guz pierwotny, N (nodes) dotyczy zajęcia regionalnych węzłów chłonnych, a M (metastases) odnosi się właśnie do przerzutów odległych, czyli takich, które pojawiają się w narządach odległych od guza pierwotnego, np. w płucach, wątrobie, kościach czy mózgu. M₀ to informacja, że w aktualnej diagnostyce obrazowej i klinicznej nie ma dowodów na obecność takich przerzutów. W praktyce klinicznej oznacza to zwykle wcześniejsze stadium zaawansowania nowotworu i często lepsze rokowanie. Przy planowaniu leczenia onkologicznego, np. radioterapii czy leczenia chirurgicznego, rozróżnienie M₀ i M₁ jest absolutnie kluczowe. Pacjent z M₀ może być kwalifikowany do leczenia radykalnego, czyli z intencją wyleczenia, natomiast przy M₁ najczęściej myślimy o leczeniu paliatywnym lub skojarzonym, bardziej nastawionym na kontrolę choroby i objawów niż na pełne wyleczenie. Z mojego doświadczenia warto zawsze pamiętać, że zapis M₀ nie oznacza, że przerzutów na pewno nie ma, tylko że nie są wykrywalne dostępnymi metodami (TK, MR, PET-CT, scyntygrafia, USG itd.). Dlatego tak ważne są dobrze wykonane badania obrazowe oraz ich prawidłowa interpretacja. W dobrych standardach opisu badań radiologicznych i onkologicznych zawsze jasno podaje się status M, bo od tego zależy nie tylko rodzaj terapii, ale też np. kwalifikacja do badań klinicznych czy decyzje o zakresie napromieniania w radioterapii.

Pytanie 13

Planowany obszar napromieniania PTV obejmuje

A. obszar napromieniania guza wraz z marginesami.
B. guz w mózgu bez marginesów.
C. wyłącznie obszar napromieniania guza.
D. guz w płucach bez marginesów.
Planowany obszar napromieniania PTV (Planning Target Volume) to w radioterapii pojęcie bardzo konkretne i wbrew pozorom wcale nie chodzi tylko o sam guz. PTV zawsze obejmuje obszar napromieniania guza wraz z odpowiednimi marginesami bezpieczeństwa. Te marginesy dodaje się po to, żeby skompensować wszystkie możliwe niepewności: drobne przesunięcia pacjenta, ruchy narządów (np. oddech, perystaltyka), różnice w ułożeniu z dnia na dzień, a nawet nieidealną powtarzalność ustawień aparatu. W standardach ICRU (np. ICRU 50, 62) wyróżnia się kilka objętości: GTV (gross tumor volume – widoczny guz), CTV (clinical target volume – guz + mikroskopowe szerzenie) i dopiero na CTV nakłada się marginesy, tworząc PTV. Czyli PTV to nie „to co widać”, tylko „to co chcemy na pewno pokryć dawką mimo wszystkich odchyłek”. W praktyce, przy planowaniu w TPS (system planowania leczenia), fizyk medyczny i lekarz radioterapeuta definiują GTV i CTV na obrazach TK/MR, a następnie automatycznie lub ręcznie generują marginesy, np. 5–10 mm, uzależnione od lokalizacji, stabilizacji pacjenta i techniki (IMRT, VMAT, stereotaksja). W nowoczesnych technikach IGRT marginesy czasem można zmniejszać, ale nigdy nie rezygnuje się z nich całkowicie, bo to byłoby wbrew zasadom bezpieczeństwa onkologicznego. Moim zdaniem kluczowe jest zapamiętanie: PTV = objętość kliniczna + marginesy na błędy ustawienia i ruch, a nie sam guz. Dzięki temu dawka terapeutyczna realnie trafia tam, gdzie ma trafić, a ryzyko niedonapromienienia fragmentu guza jest dużo mniejsze.

Pytanie 14

Parametr spirometryczny czynnościowa pojemność zalegająca oznaczany jest skrótem

A. TV
B. TLC
C. FRC
D. RV
Czynnościowa pojemność zalegająca to pojęcie, które bardzo łatwo pomylić z innymi objętościami płucnymi, bo nazwy i skróty są do siebie podobne, a wszystko kręci się wokół tych samych kilku litrów powietrza. Czynnościowa pojemność zalegająca oznaczana jest skrótem FRC (functional residual capacity) i opisuje ilość powietrza pozostającą w płucach po spokojnym wydechu. To jest stan równowagi między sprężystością płuc a sprężystością ściany klatki piersiowej. Wiele osób intuicyjnie zaznacza TLC, bo brzmi to „poważnie” – total lung capacity, czyli całkowita pojemność płuc. TLC to jednak maksymalna objętość gazu w płucach po najgłębszym możliwym wdechu. To zupełnie inny punkt krzywej oddechowej, skrajnie po stronie wdechu, podczas gdy FRC leży w środku, przy spokojnym oddychaniu. Utożsamianie TLC z FRC to typowy błąd polegający na myleniu pojemności opisujących maksima z pojemnościami opisującymi stan spoczynkowy. Kolejne częste skojarzenie to RV – residual volume, czyli objętość zalegająca. Sama nazwa „zalegająca” podpowiada, że może chodzić właśnie o czynnościową pojemność zalegającą. Problem w tym, że RV obejmuje tylko powietrze, którego nie można usunąć nawet przy maksymalnie forsownym wydechu. FRC jest większa, bo zawiera RV oraz dodatkowo zapasową objętość wydechową (ERV). Mylenie RV z FRC wynika zwykle z tego, że ktoś kojarzy słowo „zalegająca”, ale nie pamięta, że FRC to pojemność (czyli suma), a RV to tylko jedna z objętości. Odpowiedź TV też bywa wybierana przez osoby, które trzymają się bardziej podstaw: TV, czyli tidal volume, to objętość oddechowa – ilość powietrza nabieranego i wydychanego w jednym spokojnym oddechu. To tylko „porcja” powietrza, która krąży między wdechem a wydechem, a nie to, co zostaje w płucach po wydechu. Z mojego doświadczenia najbezpieczniej jest zapamiętać proste skojarzenie: po spokojnym wydechu zostaje FRC, po maksymalnym wydechu zostaje RV, a po maksymalnym wdechu mamy TLC. W dobrych praktykach interpretacji badań czynnościowych układu oddechowego, zgodnie z zaleceniami ATS/ERS, rozróżnienie tych parametrów jest kluczowe, bo każdy z nich inaczej zmienia się w chorobach obturacyjnych i restrykcyjnych. Bez tego łatwo się pogubić w opisie spirometrii czy pletyzmografii i wyciągnąć błędne wnioski kliniczne.

Pytanie 15

Zadaniem technika elektroradiologii w pracowni badań naczyniowych jest

A. wprowadzenie cewnika w światło naczyń.
B. przygotowanie cewników.
C. nadzorowanie czynności aparatury rentgenowskiej.
D. przygotowanie niezbędnych narzędzi.
Prawidłowo wskazana rola technika elektroradiologii w pracowni badań naczyniowych to nadzorowanie czynności aparatury rentgenowskiej. W praktyce oznacza to, że technik odpowiada za poprawne przygotowanie, ustawienie i kontrolę pracy całego systemu angiograficznego: generatora, lampy rentgenowskiej, detektora, stołu, systemu akwizycji obrazu, a także parametrów ekspozycji. Lekarz wprowadza cewnik do naczynia, natomiast technik ma zadbać, żeby obrazowanie było bezpieczne, stabilne i dawało diagnostycznie przydatne obrazy. W czasie badania technik dobiera parametry takie jak kV, mA, czas ekspozycji, tryby pulsacji, kolimacja, filtracja, a także kontroluje projekcje, ruch stołu i synchronizację z podaniem kontrastu. Bardzo ważny jest też nadzór nad dawką promieniowania: monitorowanie czasu fluoroskopii, wskaźników dawki (DAP, KAP), stosowanie powiększeń tylko wtedy, gdy są naprawdę potrzebne, odpowiednie ekranowanie pacjenta i personelu. Z mojego doświadczenia, dobry technik w angiografii potrafi znacząco skrócić czas badania i zmniejszyć dawkę, a jednocześnie poprawić jakość obrazów. To on pilnuje jakości obrazu w czasie rzeczywistym, reaguje na artefakty, modyfikuje parametry przy otyłości, miażdżycy, szybkich ruchach pacjenta. Standardy pracy, także te wynikające z zasad optymalizacji dawki (ALARA), bardzo mocno podkreślają, że technik nie jest tylko „operatorem guzika”, ale specjalistą od obsługi i kontroli aparatury rentgenowskiej w całym procesie badania naczyniowego.

Pytanie 16

Które zdjęcie RTG stawu łokciowego zostało wykonane w projekcji skośnej w rotacji zewnętrznej?

A. Zdjęcie 4.
Ilustracja do odpowiedzi A
B. Zdjęcie 2.
Ilustracja do odpowiedzi B
C. Zdjęcie 1.
Ilustracja do odpowiedzi C
D. Zdjęcie 3.
Ilustracja do odpowiedzi D
Na pierwszy rzut oka wszystkie cztery zdjęcia mogą wydawać się podobne, bo pokazują ten sam staw łokciowy, ale kluczowa jest tutaj projekcja i rotacja kończyny. Błędny wybór wynika zwykle z mylenia projekcji skośnej z klasycznymi projekcjami AP i boczną. Zdjęcie 2 to typowa projekcja przednio–tylna (AP). Kończyna jest ustawiona bez istotnej rotacji, kłykcie kości ramiennej są widoczne bardziej symetrycznie, a kości przedramienia – promieniowa i łokciowa – przebiegają prawie równolegle. To ustawienie służy do ogólnej oceny osi kończyny i szerokości szpary stawowej, ale nie daje tak dobrego wglądu w boczne struktury stawu jak projekcja skośna. Zdjęcia 3 i 4 natomiast reprezentują projekcje boczne stawu łokciowego, zginanego mniej więcej do kąta prostego. W projekcji bocznej kości promieniowa i łokciowa częściowo nakładają się na siebie, a wyrostek łokciowy i bloczek kości ramiennej są widoczne w charakterystycznym „profilu”. Taka projekcja jest idealna do oceny wysięku w stawie, przemieszczenia odłamów wyrostka łokciowego czy ustawienia stawu po urazie, ale nie jest to obraz skośny w rotacji zewnętrznej. Typowy błąd polega na tym, że każdą nienormalną, czyli nie-AP projekcję, traktuje się jako „skośną”. Tymczasem projekcja skośna w rotacji zewnętrznej to konkretne ułożenie: ramię i przedramię w przedłużeniu, a całą kończynę obraca się na zewnątrz o kilkadziesiąt stopni. Na zdjęciu daje to lepsze uwidocznienie struktur po stronie promieniowej, zwłaszcza głowy kości promieniowej, i zmniejsza nakładanie na kłykcie. Z mojego doświadczenia warto zawsze zadać sobie pytanie: czy widzę klasyczny profil (boczna), czy symetrię kłykci (AP), czy może coś „pomiędzy” z wyraźnym przesunięciem struktur bocznych – i dopiero wtedy decydować, czy to projekcja skośna. Dzięki temu łatwiej uniknąć pomylenia bocznej z projekcją skośną, co w praktyce może prowadzić do błędnej oceny subtelnych złamań po stronie promieniowej.

Pytanie 17

W sekwencji echa spinowego obraz T2-zależny uzyskuje się przy czasie repetycji TR

A. od 300 ms do 400 ms
B. od 500 ms do 700 ms
C. od 800 ms do 900 ms
D. powyżej 2000 ms
Prawidłowa odpowiedź „powyżej 2000 ms” dobrze oddaje charakter obrazowania T2-zależnego w klasycznej sekwencji echa spinowego (spin echo). Żeby uzyskać kontrast T2, trzeba możliwie mocno zredukować wpływ różnic w T1, a podkreślić różnice w czasie relaksacji poprzecznej T2 między tkankami. Z praktycznego punktu widzenia oznacza to zastosowanie długiego czasu repetycji TR (typowo > 2000 ms) oraz stosunkowo długiego czasu echa TE (zwykle rzędu 80–120 ms). Długi TR sprawia, że magnetyzacja podłużna większości tkanek zdąży się w dużej mierze zregenerować przed kolejnym impulsem RF, przez co kontrast T1 ulega „spłaszczeniu”. Wtedy głównym czynnikiem różnicującym jasność tkanek na obrazie staje się ich T2. W praktyce klinicznej, np. w badaniach mózgowia, sekwencje T2-zależne (SE lub FSE/TSE) z TR powyżej 2000 ms są standardem do uwidaczniania obrzęku, zmian zapalnych, demielinizacyjnych czy ognisk niedokrwiennych. Płyn mózgowo-rdzeniowy przy długim TR i długim TE jest bardzo jasny, a tkanka tłuszczowa mniej dominuje niż w obrazach T1-zależnych. Moim zdaniem warto zapamiętać prostą zasadę: długie TR = wyciszamy T1, długie TE = podkreślamy T2. W większości protokołów MR stosowanych w szpitalach i przychodniach właśnie takie parametry (TR > 2000 ms) są wpisane jako domyślne dla sekwencji T2-zależnych spin echo, zgodnie z powszechnie przyjętymi rekomendacjami producentów skanerów i standardami opisów radiologicznych.

Pytanie 18

Która metoda leczenia onkologicznego zaliczana jest do leczenia systemowego?

A. Chirurgia.
B. Chemioterapia.
C. Brachyterapia.
D. Teleradioterapia.
Prawidłowo wskazana została chemioterapia, bo jest klasycznym przykładem leczenia systemowego w onkologii. Leczenie systemowe oznacza, że podawany lek działa w całym organizmie – krąży z krwią, dociera zarówno do guza pierwotnego, jak i do mikroprzerzutów, których nie widać w badaniach obrazowych. Chemioterapeutyki, ale też leki celowane czy immunoterapia, są projektowane właśnie po to, żeby „objechać” cały organizm i szukać komórek nowotworowych gdziekolwiek się one ukryły. W praktyce klinicznej chemioterapię stosuje się: przed operacją (neoadiuwantowo), żeby zmniejszyć masę guza, po operacji (adiuwantowo), żeby zniszczyć komórki pozostałe w organizmie, albo w chorobie uogólnionej, kiedy nowotwór już przerzutował. Moim zdaniem warto zapamiętać, że jak słyszysz w opisie „leczenie ogólnoustrojowe” czy „systemowe”, to w onkologii prawie zawsze chodzi o chemioterapię, terapie celowane lub immunoterapię, a nie o promieniowanie czy skalpel. Standardy postępowania (np. wytyczne ESMO, NCCN) bardzo jasno rozróżniają te grupy: chirurgia i radioterapia to leczenie miejscowe, natomiast chemioterapia jest leczeniem systemowym, często łączonym z innymi metodami w ramach tzw. leczenia skojarzonego. W codziennej pracy zespołu onkologicznego decyzja, czy pacjent ma dostać leczenie systemowe, zależy od stopnia zaawansowania klinicznego (TNM), stanu ogólnego pacjenta, biomarkerów nowotworu i celów terapii (radykalne vs paliatywne). Dobrą praktyką jest też monitorowanie działań niepożądanych chemioterapii, bo wpływa ona na cały organizm, a nie tylko na guz – stąd konieczność regularnych badań krwi, oceny nerek, wątroby i wsparcia objawowego.

Pytanie 19

Technik elektroradiolog do badania MR kręgosłupa lędźwiowego powinien ułożyć pacjenta:

A. na brzuchu, nogami do magnesu, ręce wzdłuż tułowia.
B. na plecach, głową do magnesu, ręce wzdłuż tułowia.
C. na brzuchu, nogami do magnesu, ręce za głową.
D. na plecach, głową do magnesu, ręce za głową.
W badaniu MR kręgosłupa lędźwiowego kluczowe jest takie ułożenie pacjenta, które zapewnia jednocześnie komfort, stabilność oraz optymalne warunki pracy dla cewek nadawczo‑odbiorczych. Odpowiedzi sugerujące pozycję na brzuchu są w praktyce stosowane bardzo rzadko i tylko w wyjątkowych sytuacjach klinicznych. Pozycja na brzuchu jest dla większości pacjentów znacznie mniej wygodna, szczególnie przy dłuższych badaniach. Utrudnia swobodne oddychanie, może nasilać ból u osób z problemami kręgosłupa i zwiększa ryzyko niewielkich, ale częstych ruchów kompensacyjnych. Z mojego doświadczenia takie mikroruchy potrafią całkowicie zepsuć sekwencje wysokorozdzielcze, zwłaszcza w obrazowaniu drobnych struktur kanału kręgowego. Dodatkowo przy ułożeniu na brzuchu trudniej jest prawidłowo dopasować cewki kręgosłupowe i powierzchowne. Zwiększa to dystans między cewką a strukturą badaną, co obniża stosunek sygnału do szumu i finalnie pogarsza jakość obrazów. Pojawia się też problem z prawidłowym podparciem głowy i dróg oddechowych, szczególnie u osób starszych, otyłych czy z dusznością. Kolejna kwestia to ustawienie rąk. Propozycje, aby ręce były za głową, są w rezonansie zwykle złym pomysłem. Taka pozycja szybko powoduje drętwienie, ból barków i napięcie mięśni obręczy kończyny górnej. Pacjent zaczyna się wiercić, poprawiać, a każda taka korekta w trakcie sekwencji prowadzi do artefaktów ruchowych. W tomografii komputerowej czas ekspozycji jest krótki, więc ręce za głową czasem się stosuje, ale w MR, gdzie jedna sekwencja może trwać kilka minut, jest to po prostu niepraktyczne i sprzeczne z dobrymi praktykami. Częstym błędem myślowym jest przenoszenie schematów z RTG czy TK na rezonans. W RTG lędźwiowego można częściej spotkać inne ustawienia, ale MR rządzi się swoimi prawami: długie czasy akwizycji, wysoka czułość na ruch i specyficzna konstrukcja cewek wymuszają pozycję stabilną, możliwie neutralną anatomicznie. Standardy większości ośrodków oraz wytyczne producentów aparatów jasno preferują pozycję na plecach, głową do magnesu, z rękami wzdłuż tułowia jako ustawienie wyjściowe dla badań kręgosłupa. Wszelkie odstępstwa od tego schematu powinny być uzasadnione konkretnymi wskazaniami klinicznymi, a nie wygodą technika czy przyzwyczajeniem z innych modalności obrazowych.

Pytanie 20

W badaniu EEG elektrody referencyjne przymocowane do płatka ucha to

A. A1, A2
B. C3, C4
C. Fp1,Fp2
D. P3, P4
Prawidłowo – w klasycznym badaniu EEG elektrody referencyjne umieszczane na płatkach uszu oznaczamy jako A1 (ucho lewe) i A2 (ucho prawe). Litera „A” pochodzi od słowa „auricular”, czyli uszny. W systemie 10–20 to jest standardowe, międzynarodowo przyjęte oznaczenie i praktycznie w każdej pracowni EEG, która trzyma się zaleceń IFCN (International Federation of Clinical Neurophysiology), spotkasz właśnie te symbole. Płatki uszu traktuje się jako miejsca stosunkowo „elektrycznie spokojne”, czyli z mniejszym udziałem aktywności korowej, dlatego dobrze się nadają na elektrody odniesienia w wielu montażach, np. w montażu uszno-mózgowym (ear-linked). W praktyce technik EEG często sprawdza, czy A1 i A2 są poprawnie przymocowane, bo jeśli kontakt z płatkiem ucha jest słaby, to później w zapisie widzimy sztuczne różnice potencjałów i pojawiają się fałszywe asymetrie między półkulami. Co ciekawe, w niektórych pracowniach stosuje się referencję złączoną A1+A2, żeby zminimalizować wpływ jednostronnych zakłóceń. Moim zdaniem warto zapamiętać, że A1/A2 to taki punkt wyjścia – jak zobaczysz w opisie montażu „referencja do A1/A2”, od razu wiesz, że chodzi o płatki uszu, a nie o okolice czaszkowe. Znajomość tych oznaczeń ułatwia potem interpretację zapisu, rozróżnianie artefaktów od rzeczywistej aktywności bioelektrycznej mózgu oraz poprawne porównywanie zapisów między różnymi pracowniami i aparatami EEG. To jest po prostu element podstawowej „mapy” głowy w EEG, bez którego ciężko się poruszać w diagnostyce elektromedycznej.

Pytanie 21

Kasety do pośredniej radiografii cyfrowej CR są wyposażone

A. w folie wzmacniające.
B. w płyty ołowiowe.
C. w filmy rentgenowskie.
D. w płyty fosforowe.
Prawidłowo – w systemie pośredniej radiografii cyfrowej CR kasety są wyposażone w płyty fosforowe, nazywane też płytami obrazowymi (IP – imaging plate). To nie są klasyczne filmy, tylko specjalne płyty z fosforem luminescencyjnym, najczęściej fosforem halogenkowym z domieszką europu. Pod wpływem promieniowania rentgenowskiego w krysztale fosforu gromadzi się energia w postaci tzw. obrazu utajonego. Ten obraz nie jest widoczny gołym okiem, dopiero skaner CR odczytuje go laserem, powodując zjawisko fotostymulowanej luminescencji. Wtedy emisja światła jest zamieniana przez fotopowielacz i przetwornik A/C na sygnał cyfrowy, który trafia do systemu PACS. W praktyce, podczas pracy w pracowni RTG, płyta fosforowa zachowuje się podobnie jak dawny film: wkładasz ją do kasety, po ekspozycji przenosisz do czytnika CR, a po odczycie płyta jest kasowana i może być użyta ponownie dziesiątki, a nawet setki razy, o ile nie zostanie mechanicznie uszkodzona. Moim zdaniem ważne jest, żeby kojarzyć CR właśnie z płytą fosforową, a DR z detektorem płaskopanelowym – to dwa różne systemy cyfrowe. Standardem dobrej praktyki jest delikatne obchodzenie się z kasetami CR, unikanie zarysowań i zginania, bo wszelkie uszkodzenia płyty fosforowej potem wychodzą jako artefakty na obrazie (pasy, plamki, „zadrapania”). W wielu szpitalach CR nadal jest używany w pracowniach ogólnych, na SOR czy w weterynarii, bo jest tańszy i bardziej elastyczny niż pełne DR, a kluczowe jest właśnie to, że sercem kasety jest płyta fosforowa, a nie film rentgenowski czy płyta ołowiowa.

Pytanie 22

W radioterapii hadronowej leczenie odbywa się przy użyciu

A. aparatu kobaltowego.
B. cyklotronu.
C. aparatu rentgenowskiego.
D. mobetronu.
Prawidłowo – w radioterapii hadronowej kluczowe jest użycie akceleratora cząstek, najczęściej cyklotronu. Hadrony (np. protony, jony węgla) to naładowane cząstki cięższe od elektronów, które mają zupełnie inny rozkład dawki w tkankach niż klasyczne promieniowanie fotonowe z liniowego akceleratora. Najważniejsze zjawisko, o którym warto pamiętać, to tzw. pik Bragga: dawka rośnie w miarę penetracji i maksimum osiąga na określonej głębokości, po czym gwałtownie spada praktycznie do zera. Dzięki temu można bardzo precyzyjnie „położyć” wysoką dawkę w guzie, jednocześnie oszczędzając tkanki położone za nim. W praktyce klinicznej oznacza to np. możliwość skutecznego leczenia guzów mózgu u dzieci, nowotworów gałki ocznej, guzów przy kręgosłupie czy w okolicy podstawy czaszki, gdzie ochrona struktur krytycznych (rdzeń kręgowy, pień mózgu, nerwy wzrokowe) jest absolutnym priorytetem. Cyklotron przyspiesza protony do energii rzędu 70–250 MeV, a następnie wiązka jest formowana, skanowana i kształtowana w systemie terapeutycznym (skanowanie ołówkową wiązką, systemy kolimacji, modulatory energii). Z mojego doświadczenia, w planowaniu leczenia hadronowego bardzo mocno podkreśla się precyzyjne obrazowanie (TK, MR) oraz dokładne wyznaczenie objętości tarczowych i narządów krytycznych, bo cała przewaga protonoterapii polega na tej doskonałej konformności dawki. Standardy ośrodków referencyjnych i wytyczne międzynarodowe (np. ESTRO, PTCOG) podkreślają, że radioterapia hadronowa wymaga ścisłej kontroli jakości wiązki z cyklotronu, codziennych testów parametrów fizycznych oraz bardzo dokładnego unieruchomienia pacjenta. Takie leczenie nie jest realizowane aparatem rentgenowskim, kobaltem czy mobetronem – to już inna liga technologiczna i fizyczna.

Pytanie 23

Czas repetycji w obrazowaniu metodą rezonansu magnetycznego to

A. czas między dwoma impulsami częstotliwości radiowej.
B. czas mierzony od impulsu odwracającego 180° do impulsu 90°.
C. czas mierzony od impulsu 90° do szczytu amplitudy sygnału odebranego w cewce.
D. czas kąta przeskoku.
W rezonansie magnetycznym łatwo się pogubić w różnych czasach: mamy czas repetycji (TR), czas echa (TE) i czas inwersji (TI). Jeżeli nie złapie się intuicji, co który oznacza, to odpowiedzi oparte na skojarzeniach typu „kąt”, „szczyt sygnału” czy „odwrócenie” brzmią sensownie, ale niestety mijają się z fizyką badania. Czas repetycji nie ma nic wspólnego z „czasem kąta przeskoku”. W MR owszem, mówimy o kącie odchylenia magnetyzacji (np. 90°, 180°, małe kąty w sekwencjach GRE), ale nie mierzymy żadnego „czasu kąta”. Kąt jest parametrem impulsu RF, a TR to odstęp czasowy między kolejnymi impulsami pobudzającymi. Łączenie TR z kątem wynika często z mylenia definicji z pracą gradientów i zmianą fazy, ale to zupełnie inna bajka. Z kolei określenie „czas mierzony od impulsu odwracającego 180° do impulsu 90°” opisuje w istocie czas inwersji (TI) stosowany w sekwencjach inwersyjno-odtworzeniowych, takich jak STIR czy FLAIR. TI dobieramy tak, żeby wygasić sygnał określonej tkanki, np. tłuszczu albo płynu mózgowo-rdzeniowego. To bardzo ważny parametr, ale nie jest to TR. W tych sekwencjach nadal istnieje TR, który liczymy od cyklu do cyklu pobudzenia, natomiast TI jest dodatkowym czasem w środku sekwencji. Następne błędne skojarzenie to „czas mierzony od impulsu 90° do szczytu amplitudy sygnału odebranego w cewce”. To już bardziej przypomina definicję czasu echa (TE). TE to odstęp między impulsem pobudzającym RF (zwykle 90°) a momentem, w którym rejestrujemy maksimum sygnału echa w cewce. TE wpływa głównie na ważenie T2, bo od niego zależy, jak bardzo zdąży zajść relaksacja poprzeczna. Typowy błąd myślowy polega na tym, że wszystko, co „czasowe” w MR, wrzuca się do jednego worka i nazywa TR. W dobrej praktyce diagnostycznej trzeba te pojęcia rozdzielić: TR – czas między kolejnymi impulsami RF pobudzającymi ten sam wycinek, TE – czas do szczytu echa, TI – czas od impulsu 180° do 90°. Dopiero świadome operowanie tymi trzema parametrami pozwala rozumieć, dlaczego dany protokół daje obraz bardziej T1-, T2- czy PD-zależny i jak modyfikacje wpływają na kontrast, SNR i całkowity czas badania.

Pytanie 24

Źródłem promieniowania protonowego stosowanego w radioterapii jest

A. przyspieszacz liniowy.
B. cyberknife.
C. cyklotron.
D. bomba kobaltowa.
Prawidłowo wskazano cyklotron jako źródło promieniowania protonowego w radioterapii. W nowoczesnej terapii protonowej wiązka protonów musi być rozpędzona do bardzo wysokich energii, rzędu 70–250 MeV, tak aby miała odpowiedni zasięg w tkankach pacjenta. Do takiego przyspieszania świetnie nadaje się właśnie cyklotron, czyli akcelerator cykliczny, w którym protony poruszają się po spiralnej trajektorii w silnym polu magnetycznym i są wielokrotnie przyspieszane przez zmienne pole elektryczne. Na wyjściu z cyklotronu otrzymujemy stabilną, praktycznie ciągłą wiązkę protonów o zadanej energii. Dopiero później ta wiązka jest kształtowana przez systemy optyki wiązki, skanery, kolimatory i modulatory zasięgu, żeby precyzyjnie dopasować rozkład dawki do guza. W praktyce klinicznej cyklotron jest sercem całego ośrodka protonoterapii – zwykle znajduje się w osobnym, silnie osłoniętym bunkrze, a do stanowisk terapeutycznych wiązka jest doprowadzana systemem tuneli próżniowych i magnesów odchylających. Dzięki efektowi piku Bragga protony oddają większość energii na końcu swojego toru, co pozwala oszczędzać zdrowe tkanki za guzem; to jedna z głównych zalet protonoterapii w porównaniu z klasyczną fotonową radioterapią z przyspieszacza liniowego. Moim zdaniem warto pamiętać, że inne urządzenia, które często widzi się na oddziale radioterapii, jak linak czy cyberknife, pracują zupełnie inaczej – generują głównie promieniowanie fotonowe (X), a nie wiązkę protonów. W standardach międzynarodowych (np. zalecenia ICRU, IAEA) zawsze podkreśla się, że dla wiązek protonowych stosuje się wyspecjalizowane akceleratory, w tym właśnie cyklotrony lub synchrotrony, a nie klasyczne bomby kobaltowe.

Pytanie 25

Testy specjalistyczne aparatów rentgenowskich do zdjęć wewnątrzustnych są przeprowadzane

A. co 6 miesięcy.
B. co najmniej raz na 12 miesięcy.
C. co miesiąc.
D. co najmniej raz na 24 miesiące.
W przypadku testów specjalistycznych aparatów rentgenowskich do zdjęć wewnątrzustnych bardzo łatwo pomylić je z innymi rodzajami kontroli jakości, które robi się częściej. Stąd biorą się odpowiedzi typu „co miesiąc” czy „co 6 miesięcy”. W codziennej praktyce faktycznie wykonuje się różne sprawdzenia – np. testy podstawowe, bieżącą ocenę jakości obrazu, testy eksploatacyjne po naprawie. To jednak nie są testy specjalistyczne w rozumieniu przepisów ochrony radiologicznej i nadzoru nad aparaturą rentgenowską. Zbyt krótki, comiesięczny lub półroczny interwał jest w tym kontekście nadinterpretacją wymagań. Można oczywiście wykonywać takie pomiary częściej z własnej inicjatywy, ale prawo mówi o minimalnej częstości testów specjalistycznych, a nie o maksymalnym dopuszczalnym odstępie pomiędzy dowolnymi kontrolami. Typowym błędem myślowym jest tu wrzucenie do jednego worka wszystkich rodzajów testów: podstawowych, specjalistycznych, odbiorczych i okresowych. Tymczasem testy specjalistyczne są bardziej rozbudowane, zwykle prowadzone przez uprawnionego fizyka medycznego lub inspektora, z użyciem profesjonalnych fantomów i przyrządów pomiarowych, i dlatego ich cykl jest dłuższy. Z kolei odpowiedź „co najmniej raz na 12 miesięcy” sugeruje intuicyjne przekonanie, że „raz w roku” to taki bezpieczny, standardowy okres dla każdej kontroli technicznej. W wielu dziedzinach faktycznie tak jest, ale w diagnostyce stomatologicznej dla aparatów wewnątrzustnych przepisy dopuszczają dłuższy, dwuletni okres między testami specjalistycznymi. Nie oznacza to oczywiście, że aparat może działać „samopas” przez dwa lata. Nadal obowiązują testy podstawowe, bieżąca obserwacja jakości zdjęć, kontrola dokumentacji dawek i reagowanie na wszelkie nieprawidłowości. Jednak formalny, pełny test specjalistyczny, z kompleksową oceną dawki, warstwy półchłonnej, geometrii wiązki i stabilności parametrów, musi być wykonany co najmniej raz na 24 miesiące. Moim zdaniem ważne jest rozróżnienie między racjonalną ostrożnością a wymogami prawnymi i organizacyjnymi. Jeśli ktoś odpowiada krótszym okresem, zwykle kieruje się chęcią „większego bezpieczeństwa”, ale nie odróżnia, które testy są wymagane jak często. Dobra praktyka to zapamiętać: testy specjalistyczne dla aparatów do zdjęć wewnątrzustnych – maksymalnie co 2 lata, a wszystko, co dzieje się częściej, to już inne kategorie kontroli jakości i nadzoru nad pracą aparatu.

Pytanie 26

Na rentgenogramie uwidoczniono badanie

Ilustracja do pytania
A. angiografii nerkowej TK.
B. angiografii nerkowej.
C. urografii.
D. urografii TK.
Na zdjęciu widzimy klasyczną urografię, czyli badanie RTG układu moczowego po dożylnym podaniu środka cieniującego. Świadczy o tym kilka charakterystycznych cech obrazu. Po pierwsze – projekcja jest typowo przeglądowa AP jamy brzusznej i miednicy, bez warstwowania, bez rekonstrukcji 3D, bez typowego „przekrojowego” wyglądu jak w tomografii komputerowej. Widzimy zarys kręgosłupa lędźwiowego, talerzy biodrowych i – co najważniejsze – wyraźnie zakontrastowane kielichy nerkowe, miedniczki nerkowe oraz moczowody schodzące do pęcherza wypełnionego kontrastem. To jest dokładnie obraz fazy wydzielniczej urografii dożylnej. W angiografii nerkowej środek cieniujący wypełniałby tętnice nerkowe i ich gałęzie, byłby widoczny typowy „drzewkowaty” obraz naczyń, a nie układ kielichowo‑miedniczkowy. Dodatkowo angiografia wymagałaby cewnika w tętnicy (zwykle udowej), a obraz skupiałby się na naczyniach, nie na zarysie moczowodów czy pęcherza. W urografii TK natomiast mielibyśmy serię przekrojów poprzecznych (axial), ewentualnie rekonstrukcje MPR, a nie pojedynczą płaską kliszę. Moim zdaniem to jest bardzo typowy przykład, jaki można spotkać w podręcznikach – klasyczny obraz kontrastowego wypełnienia całego górnego i dolnego odcinka dróg moczowych. W praktyce klinicznej taka urografia służy do oceny drożności moczowodów, wykrywania kamieni, wad wrodzonych, poszerzeń układu kielichowo‑miedniczkowego czy oceny pęcherza. Choć dziś częściej używa się urografii TK, to rozpoznawanie klasycznego badania RTG nadal jest ważne, bo takie zdjęcia wciąż pojawiają się w dokumentacji i na egzaminach.

Pytanie 27

Jednym z kryteriów poprawnie wykonanego badania spirometrycznego jest czas trwania natężonego wydechu, który powinien wynosić u osób powyżej 10 roku życia co najmniej

A. 4 sekundy.
B. 6 sekund.
C. 2 sekundy.
D. 3 sekundy.
Prawidłowo – w spirometrii jednym z kluczowych kryteriów akceptowalności manewru jest czas trwania natężonego wydechu (FVC), który u osób powyżej 10. roku życia powinien wynosić co najmniej 6 sekund. Wynika to z wytycznych m.in. ATS/ERS, które podkreślają, że krótszy wydech bardzo często zaniża wartość FVC i może całkowicie zafałszować interpretację badania. U dorosłych i starszych dzieci pojemność życiowa wydychana natężenie nie jest osiągana w 2–3 sekundy, czasem potrzeba nawet dłuższego wysiłku, szczególnie przy obturacji dróg oddechowych. Moim zdaniem w praktyce najważniejsze jest pilnowanie dwóch rzeczy: żeby pacjent naprawdę dmuchał „do końca”, aż do wyraźnego plateau na krzywej objętość–czas, oraz żeby ten wysiłek trwał co najmniej właśnie te 6 sekund. Technik czy pielęgniarka wykonująca badanie powinna aktywnie motywować pacjenta: głośno zachęcać, kontrolować zapis na ekranie i przerwać dopiero wtedy, gdy spełnione są kryteria czasu i kształtu krzywej. U wielu osób z POChP albo astmą wydech jest długi i męczący – ale dokładnie o to chodzi, bo wtedy widzimy rzeczywisty obraz zwężenia dróg oddechowych. W dobrych pracowniach spirometrycznych standardem jest zapis kilku prób, z których wybiera się te spełniające kryteria: gwałtowny start wydechu, brak kaszlu, brak przecieków, brak przedwczesnego zakończenia oraz właśnie minimalny czas wydechu 6 sekund (lub osiągnięcie wyraźnego plateau przez ≥1 sek.). Jeśli czas jest krótszy, wynik oznacza się jako nieakceptowalny, nawet gdy liczby „na oko” wyglądają ładnie. Dłuższy czas pozwala też lepiej ocenić wskaźniki jak FEV1, FVC i ich stosunek, co jest podstawą rozpoznawania obturacji, restrykcji i oceny skuteczności leczenia. To jest po prostu element rzetelnej jakości badania.

Pytanie 28

Na ilustracji przedstawiono przygotowanie pacjenta do badania

Ilustracja do pytania
A. EEG
B. KTG
C. ERG
D. EMG
Na zdjęciu widać bardzo typowe przygotowanie do badania EMG – dokładniej do elektroneurografii, czyli stymulacyjnej części badania przewodnictwa nerwowego. Mamy tutaj kończynę z założonym mankietem uziemiającym/odprowadzającym (zielony element) oraz dwie elektrody powierzchowne przyklejone nad mięśniem, do którego dochodzi badany nerw. Dodatkowo z boku widoczna jest elektroda stymulująca (igłowa lub pierścieniowa), którą podaje się krótkie impulsy prądowe. To klasyczny układ: elektroda aktywna i referencyjna nad brzuścem mięśnia oraz elektroda stymulująca w przebiegu nerwu. W EMG rejestruje się potencjały czynnościowe mięśni wywołane pobudzeniem nerwów obwodowych albo spontaniczną aktywność mięśnia. W praktyce technik musi zadbać o kilka rzeczy: dokładne odtłuszczenie skóry, prawidłowe rozmieszczenie elektrod w osi mięśnia, dobrą przyczepność żelowych elektrod i stabilne ułożenie kończyny, żeby artefakty ruchowe nie zniszczyły zapisu. Z mojego doświadczenia wiele problemów z jakością sygnału w EMG wynika z pośpiechu przy przygotowaniu skóry. W badaniach przewodnictwa nerwowego mierzy się latencję, amplitudę i prędkość przewodzenia, co jest kluczowe np. w diagnostyce zespołu cieśni nadgarstka, neuropatii cukrzycowych, uszkodzeń korzeni nerwowych czy urazów nerwów po złamaniach. Standardy pracowni neurofizjologii klinicznej zalecają też kontrolę temperatury kończyny, bo zbyt zimna ręka spowalnia przewodzenie i fałszuje wyniki. Właśnie ten układ elektrod na kończynie, bez udziału głowy, brzucha czy aparatury kardiotokograficznej, jednoznacznie wskazuje na EMG, a nie na EEG, ERG czy KTG.

Pytanie 29

Na obrazie MR kręgosłupa lędźwiowego strzałką wskazano

Ilustracja do pytania
A. osteofit na poziomie L4-L5
B. osteofit na poziomie L2-L3
C. przepuklinę na poziomie L2-L3
D. przepuklinę na poziomie L4-L5
Na tym obrazie MR strzałka nie wskazuje zmian kostnych, tylko patologię krążka międzykręgowego, dlatego odpowiedzi sugerujące osteofit są merytorycznie chybione. Osteofit to narośl kostna wychodząca z krawędzi trzonu kręgu, najczęściej o ostrym, dziobowatym zarysie, który w rezonansie ma sygnał typowy dla kości korowej i gąbczastej. Na przedstawionym badaniu widać natomiast ogniskowe uwypuklenie struktury o sygnale identycznym jak pozostała część krążka, zlokalizowane na jego tylno-dolnym obwodzie, wnikające do kanału kręgowego i modelujące worek oponowy. To jest klasyczny obraz przepukliny dysku, a nie osteofitozy. Częsty błąd w interpretacji polega na wrzucaniu „wszystkiego co wystaje do kanału” do jednego worka i nazywaniu tego osteofitem. W diagnostyce obrazowej trzeba najpierw zadać sobie pytanie: czy zmiana wychodzi z trzonu (kość), czy z przestrzeni międzykręgowej (dysk). Tu wyraźnie widać, że punkt wyjścia to krążek międzykręgowy. Druga kwestia to prawidłowe rozpoznanie poziomu. Mylenie L2–L3 z L4–L5 wynika zwykle z niedokładnego liczenia trzonów od góry albo od kości krzyżowej. Standardem jest liczenie od L1, który leży bezpośrednio pod ostatnim kręgiem piersiowym z żebrami, oraz uwzględnianie położenia względem kości krzyżowej – L5 styka się z S1. Na obrazie widać, że przepuklina leży bezpośrednio nad segmentem L5–S1, a więc jest to poziom L4–L5, a nie L2–L3. Kolejny typowy błąd to mylenie wypukliny krążka (diffuse bulging) z ogniskową przepukliną – tutaj zarys jest wyraźnie ogniskowy, a tylna krawędź dysku nie jest równomiernie pogrubiała na całym obwodzie. W praktyce klinicznej takie pomyłki mogą prowadzić do złego skorelowania objawów z badaniem obrazowym, a nawet do zaplanowania niewłaściwego poziomu zabiegu. Dlatego w dobrych praktykach opisowych zawsze podkreśla się konieczność: poprawnej identyfikacji poziomu, rozróżnienia zmian kostnych od dyskowych oraz precyzyjnego określenia typu i kierunku przepukliny.

Pytanie 30

W badaniu EKG różnice potencjałów pomiędzy lewym podudziem a lewym przedramieniem rejestruje odprowadzenie

A. aVL
B. I
C. III
D. aVR
Prawidłowo wskazane odprowadzenie III rejestruje różnicę potencjałów między lewym podudziem (elektroda na nodze lewej – LL) a lewym przedramieniem (elektroda na ręce lewej – LA). W klasycznym 12‑odprowadzeniowym EKG mamy trzy odprowadzenia kończynowe dwubiegunowe: I, II i III. Zgodnie ze standardem Einthovena: odprowadzenie I zapisuje różnicę potencjałów między prawym przedramieniem (RA) a lewym przedramieniem (LA), odprowadzenie II – między RA a lewym podudziem (LL), a właśnie odprowadzenie III – między LA a LL. Czyli w uproszczeniu: III = LL – LA. To dokładnie odpowiada treści pytania. W praktyce klinicznej znajomość tej konfiguracji jest bardzo ważna, bo ułatwia rozumienie tzw. trójkąta Einthovena i zależności między odprowadzeniami. Można np. korzystać z zależności I + III = II do kontroli jakości zapisu – jeśli suma wektorowa się „nie zgadza”, to często oznacza źle założone elektrody albo artefakty. Moim zdaniem technik, który automatycznie kojarzy, z których elektrod składa się każde odprowadzenie, ma dużo łatwiej przy rozwiązywaniu problemów typu: „dziwnie odwrócone załamki P” czy „nagle ujemny QRS w I”. Wtedy można podejrzewać zamianę elektrod RA/LA albo LA/LL. W codziennej pracy, gdy zakładasz elektrody, warto sobie w głowie odtwarzać, że LL zawsze „wchodzi” w II i III, LA w I i III, a RA w I i II. To naprawdę pomaga w świadomym wykonywaniu badania, a nie tylko „podpinaniu kabelków”.

Pytanie 31

W zapisie EKG zespół QRS odzwierciedla

A. wyłącznie depolaryzację mięśnia komór.
B. repolaryzację mięśnia przedsionków i mięśnia komór.
C. wyłącznie repolaryzację mięśnia komór.
D. depolaryzację mięśnia przedsionków i mięśnia komór.
W tym pytaniu bardzo łatwo wpaść w pułapkę myślenia, że skoro zespół QRS jest taki „duży” i wyraźny, to musi zawierać w sobie różne procesy naraz: depolaryzację i repolaryzację, przedsionków i komór. To jednak nie tak działa. Z punktu widzenia elektrofizjologii serca zapis EKG jest sumą wektorów aktywności elektrycznej, ale poszczególne fragmenty krzywej przypisujemy do konkretnych zjawisk. Załamek P odpowiada depolaryzacji przedsionków, zespół QRS – depolaryzacji komór, a załamek T (plus odcinek ST) – repolaryzacji komór. Repolaryzacja mięśnia przedsionków rzeczywiście zachodzi, ale jest na tyle słaba i nakłada się w czasie na zespół QRS, że w standardowym 12-odprowadzeniowym EKG jej po prostu nie widać jako osobnego elementu. Założenie, że QRS odzwierciedla wyłącznie repolaryzację komór, odwraca kolejność zdarzeń. Repolaryzacja komór jest procesem wolniejszym, rozproszonym, dlatego w zapisie ma inną morfologię – to jest właśnie załamek T, czasem także załamek U. Zespół QRS jest szybki, stromy i stosunkowo wąski, co wynika z bardzo szybkiego przewodzenia pobudzenia przez układ bodźcoprzewodzący komór. W praktyce diagnostycznej, gdy oceniamy zaburzenia repolaryzacji (np. w niedokrwieniu, zaburzeniach elektrolitowych, wydłużonym QT), analizujemy głównie odcinek ST i załamek T, a nie QRS. Równie mylące jest kojarzenie zespołu QRS z jednoczesną depolaryzacją przedsionków i komór albo z łączoną repolaryzacją przedsionków i komór. Przedsionki „pracują elektrycznie” wcześniej: ich depolaryzacja to załamek P, a repolaryzacja zachodzi w czasie, gdy w zapisie pojawia się QRS, więc zlewa się z nim i jest niewidoczna. Standardowe podręczniki EKG i wytyczne kardiologiczne bardzo jasno to rozgraniczają, bo ma to znaczenie praktyczne. Jeśli ktoś myśli, że QRS zawiera także depolaryzację przedsionków, może potem błędnie interpretować brak załamka P, nie rozpoznając np. migotania przedsionków czy rytmów z węzła AV. Typowym błędem poznawczym jest też utożsamianie „dużego” wychylenia z większą ilością procesów biologicznych. Tymczasem wysoka amplituda QRS wynika głównie z większej masy mięśnia komór w porównaniu z przedsionkami i bardzo szybkiego, zsynchronizowanego pobudzenia. Dlatego w diagnostyce elektromedycznej przy interpretacji EKG zawsze uczymy się schematu: P – depolaryzacja przedsionków, QRS – depolaryzacja komór, T – repolaryzacja komór. To prosty model, ale bardzo użyteczny w codziennej praktyce, pozwalający logicznie analizować rytm, przewodzenie i zmiany niedokrwienne bez wpadania w takie właśnie nieporozumienia.

Pytanie 32

Pojawienie się w zapisie EKG patologicznego załamka Q lub QS może wskazywać na

A. bliznę po zawale pełnościennym.
B. blok prawej odnogi pęczka Hisa.
C. blok lewej odnogi pęczka Hisa.
D. bliznę po zawale podwsierdziowym.
Patologiczny załamek Q albo kompleks QS wielu osobom kojarzy się ogólnie z poważnym uszkodzeniem mięśnia sercowego, więc łatwo tu o skrót myślowy w stronę „jakiejś poważnej blokady przewodzenia” albo „każdego typu zawału”. To jest dość typowy błąd. W blokach odnóg pęczka Hisa obraz EKG zmienia się przede wszystkim w obrębie zespołu QRS, ale w inny sposób. W bloku lewej odnogi pęczka Hisa QRS jest szeroki, zwykle ≥ 120 ms, z charakterystycznym kształtem „M” lub „RR'” w odprowadzeniach V5–V6, I, aVL. Często obserwujemy brak prawidłowych małych załamków q w odprowadzeniach bocznych, natomiast nie mówimy tu o patologicznych załamkach Q w sensie blizny pozawałowej, tylko o zaburzeniu sekwencji depolaryzacji komór. Sygnał elektryczny idzie najpierw przez prawą komorę, później przez lewą, stąd ten zniekształcony, szeroki zespół. W bloku prawej odnogi z kolei typowy jest obraz rSR' w V1–V2, szeroki QRS, z poszerzoną końcową częścią zespołu w odprowadzeniach prawokomorowych. Znowu, dominuje zaburzona kolejność pobudzenia komór, a nie utrwalona martwica ściany. Załamek Q w tym kontekście nie jest cechą diagnostyczną bloku prawej odnogi. Kolejna częsta pomyłka to wiązanie patologicznych załamków Q z zawałem podwsierdziowym. Zawał podwsierdziowy, czyli niedokrwienie obejmujące głównie warstwę podwsierdziową, ma zwykle charakter „non-Q”, bez typowych, głębokich załamków Q. W EKG dominuje obniżenie odcinka ST, zmiany załamka T, ale nie powstaje klasyczna blizna transmuralna, która odwraca wektor pobudzenia i daje trwały Q lub QS. Z mojego doświadczenia wynika, że uproszczenie „każdy zawał = załamki Q” jest bardzo mylące. Standardy interpretacji EKG i wytyczne kardiologiczne dość mocno to rozróżniają: patologiczny Q lub QS jest typowy dla przebytego zawału pełnościennego, a nie dla bloków odnóg ani dla zawału ograniczonego do warstw podwsierdziowych. Dlatego przy analizie EKG warto zawsze patrzeć na szerokość QRS, morfologię w konkretnych odprowadzeniach i kontekst kliniczny, zamiast automatycznie łączyć każdy nietypowy kształt z tym samym rozpoznaniem.

Pytanie 33

Gruboziarnista folia wzmacniająca wpływa na zwiększenie na obrazie rentgenowskim nieostrości

A. fotograficznej.
B. geometrycznej.
C. ruchowej.
D. rozproszeniowej.
W tym pytaniu haczyk polega głównie na tym, żeby dobrze rozróżniać typy nieostrości w radiografii. Gruboziarnista folia wzmacniająca jest elementem układu obrazującego, czyli części odpowiedzialnej za rejestrację obrazu, a nie za ruch, geometrię wiązki czy rozproszenie promieniowania. Dlatego nie może powodować nieostrości ruchowej. Nieostrość ruchowa pojawia się, gdy pacjent się porusza, gdy technik nie ustabilizuje odpowiednio kończyny, albo gdy czas ekspozycji jest za długi. Z mojego doświadczenia w pracowni: jeśli ktoś ma problem z rozmazanymi zdjęciami klatki piersiowej, to zwykle chodzi o oddech pacjenta lub kaszel, a nie o rodzaj folii. Druga często mylona sprawa to nieostrość geometryczna. Ona wynika z wielkości ogniska lampy rentgenowskiej, odległości ognisko–film (OID, FFD) i rozbieżności wiązki. Jeśli ognisko jest duże, a obiekt znajduje się daleko od detektora, powstaje powiększenie i rozmycie krawędzi – to typowa nieostrość geometryczna. Folia wzmacniająca nie zmienia geometrii układu, więc nie może wpływać na ten typ nieostrości. Kto miesza te pojęcia, zwykle wrzuca wszystko do jednego worka: „jak obraz jest nieostry, to pewnie geometria”, a to spore uproszczenie. Pojawia się też skojarzenie z nieostrością rozproszeniową. Ta natomiast jest związana z promieniowaniem rozproszonym w ciele pacjenta i w otoczeniu, które dociera do detektora z innych kierunków niż wiązka pierwotna. Do jej ograniczania służą kratki przeciwrozproszeniowe, kolimacja i odpowiednie parametry ekspozycji. Folia wzmacniająca jedynie przetwarza to, co do niej dociera – nie generuje dodatkowego rozproszenia promieniowania X w takim sensie, by tworzyć osobny typ nieostrości. Typowym błędem myślowym jest tu łączenie „grubej” folii z czymś, co „rozprasza” wszystko dookoła. W rzeczywistości mamy do czynienia z rozpraszaniem światła w samej folii, co właśnie zaliczamy do nieostrości fotograficznej, a nie rozproszeniowej w sensie fizyki promieniowania. Dlatego poprawne rozróżnianie tych pojęć jest kluczowe przy analizie jakości obrazu i planowaniu parametrów badania RTG.

Pytanie 34

Badanie metodą Dopplera umożliwia

A. nieznaczny pomiar przepływu prędkości krwi.
B. pomiar ilości płynu w jamie opłucnej.
C. pomiar stopnia odwapnienia kości.
D. bardzo dokładny pomiar przepływu prędkości krwi.
Prawidłowo – istota badania dopplerowskiego polega właśnie na bardzo dokładnym pomiarze prędkości i kierunku przepływu krwi w naczyniach. Wykorzystuje się tu efekt Dopplera: fala ultradźwiękowa wysłana przez głowicę USG odbija się od poruszających się krwinek, a aparat analizuje zmianę częstotliwości odbitego sygnału. Na tej podstawie wylicza z dużą precyzją prędkość przepływu oraz to, czy krew płynie w stronę głowicy czy od niej. W praktyce klinicznej pozwala to ocenić np. zwężenia tętnic szyjnych, niedrożności tętnic kończyn dolnych, wydolność żył (refluks w niewydolności żylnej), a także przepływy w naczyniach nerkowych czy w tętnicy płucnej. W badaniach położniczych Doppler służy do oceny przepływów w tętnicy pępowinowej, środkowej mózgowej płodu czy tętnicach macicznych, co pomaga ocenić ryzyko niedotlenienia czy hipotrofii płodu. W dobrych praktykach pracowni USG przepływy ocenia się zarówno w trybie dopplera spektralnego (wykres prędkości w czasie), jak i dopplera kolorowego lub power Doppler, który pokazuje rozmieszczenie i charakter przepływu w obrazie przestrzennym. Moim zdaniem warto zapamiętać, że Doppler nie mierzy „trochę” czy „orientacyjnie” – przy prawidłowo ustawionym kącie insonacji, właściwej skali i kalibracji aparatu umożliwia bardzo precyzyjną, ilościową ocenę hemodynamiki, z wyliczeniem wskaźników takich jak PSV, EDV, RI czy PI, co jest standardem w nowoczesnej diagnostyce naczyniowej USG.

Pytanie 35

Na którym obrazie rentgenowskim sutka uwidoczniono zmianę patologiczną w obrębie węzłów chłonnych?

A. Obraz 4
Ilustracja do odpowiedzi A
B. Obraz 2
Ilustracja do odpowiedzi B
C. Obraz 1
Ilustracja do odpowiedzi C
D. Obraz 3
Ilustracja do odpowiedzi D
Prawidłowo wskazano obraz 2, ponieważ to właśnie na nim widać patologiczną zmianę w obrębie węzłów chłonnych pachowych. W górnej części projekcji bocznej sutka widoczna jest dobrze odgraniczona, silnie zacieniona struktura o charakterze powiększonego węzła chłonnego z cechami patologii. W mammografii węzły chłonne pachowe zwykle mają kształt fasolki, z widocznym przejaśnieniem odpowiadającym wnęce tłuszczowej. W przypadku zajęcia nowotworowego (np. przerzut raka piersi) dochodzi do powiększenia węzła, zatarcia wnęki tłuszczowej, nieregularnych zarysów, a czasem do zwapnień. Na obrazie 2 właśnie taki patologiczny węzeł jest widoczny – poza zasadniczym gruczołem sutkowym, w typowej lokalizacji pachowej. Z mojego doświadczenia to jeden z częstszych elementów, które mniej wprawne oko łatwo ignoruje, bo skupia się tylko na samym gruczole piersiowym, a nie na „obrzeżach” obrazu. Standardem opisu mammografii (zgodnie z BI-RADS) jest jednak systematyczne ocenianie nie tylko tkanki gruczołowej i skóry, ale również dołu pachowego i obecnych tam węzłów. W praktyce technika obrazowania też ma znaczenie: prawidłowo wykonana projekcja MLO (skośna przyśrodkowo‑boczna) powinna obejmować szczyt pachy, tak aby radiolog mógł ocenić węzły chłonne. Dlatego u technika elektroradiologii bardzo ważne jest nawykowe „dopilnowanie” głębokiego ujęcia pachy – dokładnie tak, jak na tym przykładzie. W codziennej pracy przekłada się to bezpośrednio na lepsze wykrywanie zaawansowania choroby nowotworowej i precyzyjniejsze planowanie leczenia chirurgicznego czy onkologicznego.

Pytanie 36

W badaniu PET stosuje się tylko radioizotopy emitujące

A. pozytony.
B. neutrony.
C. elektrony.
D. cząstki alfa.
Podstawowy błąd przy tym pytaniu wynika zwykle z pomieszania różnych rodzajów promieniowania jonizującego i ich zastosowań w diagnostyce obrazowej. W medycynie używamy neutronów, elektronów, pozytonów, fotonów gamma czy cząstek alfa, ale każda z tych cząstek ma swoją specyficzną rolę i nie da się ich tak po prostu zamieniać między sobą w konkretnych technikach obrazowania. Neutrony są używane raczej w bardzo wyspecjalizowanych procedurach, np. w niektórych typach radioterapii neutronowej czy w badaniach materiałowych, a nie w rutynowej medycynie nuklearnej. Neutron jest elektrycznie obojętny, ma inne oddziaływania z materią niż cząstki naładowane, a aparatura PET jest zbudowana do rejestracji fotonów gamma o energii 511 keV, powstających z anihilacji pozyton–elektron, a nie do rejestracji neutronów. Elektrony, a właściwie promieniowanie beta minus, są istotne w wielu radioizotopach terapeutycznych, np. w leczeniu zmian przerzutowych do kości czy w terapii radioizotopowej tarczycy. Jednak w klasycznym badaniu PET one nie odgrywają roli sygnału używanego do obrazowania. Emiter beta minus nie daje par fotonów 511 keV w koincydencji, więc skaner PET nie ma czego zarejestrować w sposób pozwalający na rekonstrukcję obrazu. To jest typowe nieporozumienie: skoro to też „beta”, to może się nada – ale PET opiera się ściśle na emisji beta plus, czyli na pozytonach. Cząstki alfa z kolei mają bardzo krótką drogę w tkankach i ogromną energię liniową (wysokie LET). To idealne narzędzie w niektórych nowoczesnych terapiach celowanych (tzw. terapia alfa celowana), ale zupełnie niepraktyczne do obrazowania całego ciała. Z praktycznego punktu widzenia ich zasięg jest tak mały, że nie ma szans, żeby zarejestrować je na zewnątrz ciała za pomocą pierścienia detektorów PET. Do tego aparatura PET nie jest konstruowana pod wykrywanie cząstek ciężkich, tylko fotonów gamma. Moim zdaniem najczęstszy błąd myślowy polega na utożsamianiu „dowolnego promieniowania jonizującego” z możliwością wykonania dowolnego badania. A tak nie jest. PET to bardzo specyficzna technika, która wymaga radioizotopów emitujących pozytony (beta plus). Pozyton po anihilacji z elektronem generuje dwa fotony 511 keV, a cały system detekcji, koincydencji i rekonstrukcji obrazu jest pod to zoptymalizowany. Zastosowanie emiterów neutronów, elektronów czy cząstek alfa po prostu nie wygenerowałoby sygnału możliwego do wykorzystania w PET, zgodnie ze standardami medycyny nuklearnej i fizyki medycznej. Dlatego poprawne rozróżnienie typów promieniowania jest tu kluczowe, zarówno dla zrozumienia teorii, jak i dla bezpiecznej praktyki klinicznej.

Pytanie 37

Rytm alfa i beta rejestruje się podczas badania

A. USG
B. HSG
C. EKG
D. EEG
Prawidłowo – rytm alfa i beta to pojęcia typowe dla elektroencefalografii, czyli badania EEG. W EEG rejestrujemy bioelektryczną aktywność mózgu za pomocą elektrod umieszczonych na skórze głowy, zwykle według międzynarodowego systemu 10–20. Rytm alfa to fale o częstotliwości ok. 8–13 Hz, najlepiej widoczne u osoby zrelaksowanej, z zamkniętymi oczami, najczęściej w okolicach potylicznych. Rytm beta ma wyższą częstotliwość, około 13–30 Hz, częściej pojawia się przy stanie czuwania, koncentracji, czasem pod wpływem leków, np. benzodiazepin. W praktyce technik EEG powinien umieć odróżnić fizjologiczne rytmy (alfa, beta, theta, delta) od zmian patologicznych, takich jak wyładowania napadowe czy fale ostre. To jest podstawa prawidłowego opisu zapisu EEG i współpracy z lekarzem. Badanie EEG wykonuje się m.in. w diagnostyce padaczki, zaburzeń świadomości, encefalopatii metabolicznych, a także w ocenie mózgowej aktywności po urazach. Z mojego doświadczenia, im lepiej rozumiesz, co oznaczają poszczególne rytmy, tym łatwiej wychwytujesz subtelne nieprawidłowości w zapisie, np. asymetrię rytmu alfa między półkulami czy nadmierną obecność rytmu beta. W standardach pracowni neurofizjologicznej podkreśla się też znaczenie aktywacji (hiperwentylacja, fotostymulacja) – wtedy zmiany w rytmach mogą się nasilać lub zmieniać, co bywa bardzo przydatne w diagnostyce napadów.

Pytanie 38

Jaka jest moc dawki pochłoniętej w brachyterapii HDR?

A. W zakresie 3-5 Gy/h
B. Więcej niż 12 Gy/h
C. W zakresie 6-11 Gy/h
D. Mniej niż 2 Gy/h
Prawidłowo – brachyterapia HDR (High Dose Rate) to technika, w której moc dawki pochłoniętej wynosi powyżej 12 Gy/h. W praktyce klinicznej stosuje się jeszcze wyższe wartości, rzędu kilkudziesięciu, a nawet kilkuset Gy/h w miejscu źródła, ale definicyjnie HDR to właśnie zakres >12 Gy/h. Jest to zgodne z klasycznym podziałem brachyterapii na LDR (low dose rate, zwykle ok. 0,4–2 Gy/h), MDR (medium dose rate), PDR (pulsed dose rate) oraz HDR. Moim zdaniem warto to sobie po prostu skojarzyć: HDR = bardzo krótki czas zabiegu, ale bardzo duża moc dawki w trakcie ekspozycji. W brachyterapii HDR stosuje się najczęściej źródło 192Ir, które jest automatycznie wysuwane z afterloadera do aplikatorów umieszczonych w guzie albo w jego bezpośrednim sąsiedztwie. Dzięki wysokiej mocy dawki można podać zaplanowaną dawkę całkowitą w kilku-kilkunastu frakcjach trwających po kilka minut, zamiast wielu godzin czy dni jak w LDR. Z punktu widzenia organizacji pracy oddziału onkologii to ogromny plus: łatwiej zaplanować harmonogram, skraca się czas zajęcia sali i aparatury, a pacjent często może być leczony ambulatoryjnie. Jednocześnie, przy tak dużej mocy dawki, bardzo ważne jest precyzyjne planowanie leczenia w systemie TPS, dokładne obrazowanie (TK, MR) do wyznaczenia objętości tarczowych i narządów krytycznych oraz rygorystyczne przestrzeganie zasad ochrony radiologicznej. W HDR każdy błąd w pozycjonowaniu aplikatora czy czasie ekspozycji od razu przekłada się na duże odchylenie dawki. Dlatego w dobrych ośrodkach tak duży nacisk kładzie się na procedury QA, weryfikację czasu przebywania źródła w poszczególnych pozycjach (tzw. dwell time) oraz kontrolę geometrii układu. W praktyce technika HDR jest szeroko stosowana np. w nowotworach ginekologicznych, raka prostaty, raka płuca czy przełyku, właśnie dzięki możliwościom konformnego podania wysokiej dawki w krótkim czasie przy stosunkowo szybkim spadku dawki w tkankach otaczających.

Pytanie 39

Na obrazie TK nadgarstka uwidocznione jest złamanie kości

Ilustracja do pytania
A. łódeczkowatej.
B. główkowatej.
C. księżycowatej.
D. haczykowatej.
Prawidłowo wskazana została kość łódeczkowata. Na obrazie TK nadgarstka widoczna jest projekcja w płaszczyźnie czołowej, a kość łódeczkowata leży w szeregu bliższym kości nadgarstka, po stronie promieniowej, między wyrostkiem rylcowatym kości promieniowej a kością główkowatą i czworoboczną większą. W TK (tak samo jak w dobrych projekcjach RTG – PA, skośnych, czasem tzw. projekcji Stechera) zwraca się uwagę na ciągłość warstwy korowej i jednorodność struktury beleczkowej. W złamaniu kości łódeczkowatej widzimy szczelinę złamania przechodzącą przez trzon, często z niewielkim przemieszczeniem odłamów lub tylko z zatarciem zarysu korowego. Moim zdaniem to jest jedno z kluczowych złamań, które technik i lekarz radiolog powinni umieć „wyłapać”, bo kość łódeczkowata ma słabsze unaczynienie (zwłaszcza biegun bliższy) i łatwo dochodzi do jałowej martwicy, jeśli uraz zostanie przeoczony. W praktyce klinicznej TK wykonuje się najczęściej wtedy, gdy klasyczne RTG jest niejednoznaczne, a pacjent ma typowe objawy: ból w tabakierce anatomicznej, ból przy osiowym obciążeniu kciuka, ograniczenie ruchu. Dobrą praktyką jest przeglądanie obrazów w kilku płaszczyznach rekonstrukcyjnych (coronal, sagittal, axial) z cienką warstwą cięcia, bo szczelina złamania czasem jest widoczna tylko w jednej z nich. W standardach opisowych zaleca się dokładne określenie lokalizacji (biegun dalszy, trzon, biegun bliższy), stopnia przemieszczenia, ewentualnych fragmentów kostnych oraz oceny powierzchni stawowych pod kątem uszkodzeń chrzęstnych. W codziennej pracy bardzo pomaga znajomość topografii: najbardziej promieniowo i nieco dłoniowo – właśnie łódeczkowata, obok niej księżycowata, a dalej w stronę łokciową – trójgraniasta i grochowata. Im lepiej kojarzysz ten układ, tym szybciej i pewniej rozpoznajesz złamania na TK i RTG.

Pytanie 40

W scyntygrafii perfuzyjnej płuc pacjentowi podawany jest radioizotop

A. ⁹⁹ᵐTc dożylnie.
B. ⁹⁹ᵐTc wziewnie.
C. ¹²³I dożylnie.
D. ¹²³I wziewnie.
W scyntygrafii perfuzyjnej płuc standardowo podaje się pacjentowi radiofarmaceutyk z technetem-99m (99mTc) dożylnie. Jest to zwykle makroagregat albuminy ludzkiej znakowany 99mTc (tzw. 99mTc-MAA). Po podaniu do żyły preparat wraz z krwią dociera do krążenia płucnego i zatrzymuje się w małych naczyniach włosowatych płuc, proporcjonalnie do przepływu krwi. Dzięki temu uzyskujemy obraz perfuzji, czyli ukrwienia poszczególnych obszarów płuc. To właśnie ten mechanizm jest kluczowy przy podejrzeniu zatorowości płucnej – widzimy ubytki perfuzji w segmentach, do których nie dopływa krew z powodu zatoru. 99mTc jest izotopem idealnym do takich badań, bo ma krótki okres półtrwania (ok. 6 godzin), emituje głównie promieniowanie gamma o energii odpowiedniej dla gammakamery i daje stosunkowo niską dawkę dla pacjenta. Podanie dożylne jest też technicznie proste i dobrze powtarzalne, co ma znaczenie w codziennej pracy w medycynie nuklearnej. W praktyce klinicznej często łączy się scyntygrafię perfuzyjną z wentylacyjną (badanie V/Q), gdzie perfuzję oceniamy właśnie po dożylnym 99mTc-MAA, a wentylację po podaniu wziewnym innego preparatu (np. aerozolu 99mTc lub gazu szlachetnego). Moim zdaniem warto zapamiętać prostą zasadę: perfuzja = droga naczyniowa = podanie dożylne. To bardzo pomaga w szybkim kojarzeniu protokołów badań przy pracy na pracowni medycyny nuklearnej i w komunikacji z lekarzem kierującym na badanie.