Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 01:21
  • Data zakończenia: 8 grudnia 2025 01:26

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono przewód elektroenergetyczny stosowany do wykonywania napowietrznych przyłączy budynków mieszkalnych?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór innej odpowiedzi niż C może wynikać z nieporozumienia dotyczącego klasyfikacji przewodów elektroenergetycznych stosowanych w przyłączach budynków. Przewody napowietrzne, szczególnie te używane do budynków mieszkalnych, muszą spełniać konkretne wymagania techniczne, które obejmują ilość rdzeni oraz ich funkcje. W przypadku przewodów, które nie są czterordzeniowe, mogą występować braki w zapewnieniu odpowiedniego zasilania. Przykładowo, przewody dwu- lub trzyrdzeniowe mogą nie wystarczyć do prawidłowego działania instalacji, ponieważ nie zapewniają odpowiedniej ilości faz, co jest kluczowe w przypadku obiektów wymagających większej mocy. Często spotykane błędy myślowe to mylenie zastosowania przewodów w różnych kontekstach – na przykład przewody stosowane w instalacjach wewnętrznych mogą różnić się od tych zaprojektowanych do pracy na wolnym powietrzu. Niezrozumienie tych różnic prowadzi do wybierania niewłaściwych rozwiązań, co z kolei może skutkować awariami lub ograniczoną efektywnością energetyczną. Znajomość standardów, takich jak PN-EN 60502-1, oraz praktyczne zrozumienie zastosowań przewodów, są kluczowe dla prawidłowego funkcjonowania systemów elektroenergetycznych.

Pytanie 2

Którego z narzędzi należy użyć do wkręcenia przedstawionego elementu w nagwintowany otwór?

Ilustracja do pytania
A. Wkrętaka krzyżowego.
B. Klucza ampulowego.
C. Wkrętaka typu torks.
D. Klucza nasadowego.
Klucz ampulowy, znany także jako klucz imbusowy, jest narzędziem przeznaczonym do pracy z śrubami i wkrętami, które mają łeb sześciokątny wewnętrzny. W przypadku opisanej sytuacji, użycie klucza ampulowego jest kluczowe, ponieważ idealnie pasuje do profilu łba śruby, co zapewnia skuteczne i bezpieczne wkręcanie lub wykręcanie. Tego typu klucze są szeroko stosowane w różnych dziedzinach, takich jak mechanika, elektronika czy budownictwo, co czyni je niezastąpionym narzędziem w zestawie każdego profesjonalisty. W praktyce, klucz ampulowy pozwala na uzyskanie dużego momentu obrotowego przy niewielkim wysiłku, co jest szczególnie ważne przy pracy z metalowymi elementami, które mogą być narażone na korozję lub inne uszkodzenia. Dodatkowo, klucze te są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do różnych śrub, zgodnie z normami ISO i DIN. Użycie odpowiedniego narzędzia z pewnością przyczyni się do wydajności pracy oraz do ograniczenia ryzyka uszkodzeń elementów montażowych.

Pytanie 3

W dokumentacji dotyczącej instalacji elektrycznej w wielopiętrowym budynku mieszkalnym wskazano, że konieczne jest użycie ochronników przeciwprzepięciowych klasy C. Gdzie powinny one zostać zamontowane?

A. w złączu budynku
B. w rozdzielnicach mieszkaniowych
C. na linii zasilającej budynek
D. w puszkach instalacyjnych gniazd odbiorczych
Odpowiedź wskazująca na rozdzielnice mieszkaniowe jako miejsce instalacji ochronników przeciwprzepięciowych klasy C jest poprawna, ponieważ rozdzielnice te pełnią kluczową rolę w zarządzaniu i dystrybucji energii elektrycznej w budynku. Ochronniki klasy C są projektowane do ochrony przed przepięciami wynikającymi z różnorodnych zjawisk, takich jak wyładowania atmosferyczne czy zakłócenia w sieci. Montaż tych urządzeń w rozdzielnicach mieszkaniowych pozwala na skuteczną ochronę wszystkich obwodów, które z nich zasilają, co jest zgodne z normą PN-EN 61643-11 oraz wytycznymi zawartymi w dokumentach technicznych dotyczących instalacji elektrycznych. Przykładowo, w przypadku wyładowania atmosferycznego, przepięcia mogą przedostać się do instalacji, co może prowadzić do uszkodzenia sprzętu elektronicznego. Umiejscowienie ochronników w rozdzielnicach minimalizuje te ryzyka, zapewniając bezpieczeństwo i ciągłość działania urządzeń w gospodarstwie domowym.

Pytanie 4

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów
A. linii kablowej zasilającej budynek.
B. instalacji elektrycznej.
C. instalacji odgromowej budynku.
D. linii napowietrznej niskiego napięcia.
Analizując inne dostępne odpowiedzi, można zauważyć, że linii kablowej zasilającej budynek, instalacji odgromowej oraz linii napowietrznej niskiego napięcia dotyczące parametry techniczne nie są w pełni adekwatne do opisanych w tabeli. W przypadku linii kablowej, chociaż mogą występować pewne parametry techniczne, jak długość czy przekrój żyły, to jednak kluczowe informacje dotyczące mocy przyłączeniowej oraz liczby obwodów są typowe dla instalacji elektrycznych wewnętrznych. Podobnie, instalacja odgromowa nie wymaga określenia mocy przyłączeniowej ani liczby obwodów, ponieważ jej celem jest ochrona budynku przed wyładowaniami atmosferycznymi, a nie efektywne zarządzanie energią. Odnośnie linii napowietrznej niskiego napięcia, to również nie podaje się parametrów takich jak rodzaj uziomu, które są kluczowe do określenia w kontekście instalacji elektrycznej wewnętrznej. Często mylenie tych kategorii wynika z niewłaściwego zrozumienia funkcji poszczególnych systemów elektrycznych w obiektach budowlanych. Warto pamiętać, że poprawne zrozumienie różnicy między tymi instalacjami oraz ich zastosowaniem jest niezbędne dla projektantów oraz techników zajmujących się instalacjami elektrycznymi i ich bezpieczeństwem.

Pytanie 5

Na której ilustracji przedstawiono symbol graficzny przewodu ochronnego?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 3.
C. Na ilustracji 4.
D. Na ilustracji 2.
Wybór innych ilustracji może wynikać z niedostatecznej znajomości zasad oznaczania przewodów ochronnych w instalacjach elektrycznych. Kluczowym błędem jest pomylenie symboli, które nie odnoszą się do przewodu ochronnego, lecz mogą być związane z innymi rodzajami przewodów, np. z przewodem fazowym lub neutralnym. Symbol graficzny przewodu ochronnego ma ściśle określoną formę, która różni się od innych oznaczeń, co sprawia, że ich rozróżnienie jest istotne dla bezpieczeństwa. Wiele osób nie zdaje sobie sprawy, że niewłaściwe oznaczenie przewodu ochronnego może prowadzić do poważnych konsekwencji, takich jak porażenie elektryczne lub uszkodzenie sprzętu. Przyczyną błędnych wyborów może być również zrozumienie funkcji przewodów, gdzie niektóre osoby nie mają pełnego obrazu roli przewodu ochronnego w systemie uziemienia. W praktyce, oznaczenia, które nie są zgodne z przyjętymi normami, mogą wprowadzać w błąd osoby pracujące z instalacjami elektrycznymi, dlatego tak ważne jest, aby korzystać z aktualnych standardów. Warto również zwrócić uwagę na regulacje prawne dotyczące bezpieczeństwa, które jasno określają, jakie oznaczenia powinny być stosowane w różnych kontekstach instalacji elektrycznych.

Pytanie 6

Jaką rolę pełnią uzwojenia pomocnicze w silniku prądu stałego?

A. Usuwają niekorzystne efekty wynikające z działania twornika
B. Przeciwdziałają rozbieganiu się silnika w przypadku spadku obciążenia
C. Generują napięcie remanentu
D. Obniżają rezystancję obwodu twornika
Wybór odpowiedzi dotyczącej zmniejszenia rezystancji obwodu twornika pokazuje, że temat uzwojeń pomocniczych jest chyba jeszcze nie do końca jasny. Taka rezystancja nie jest bezpośrednio związana z tymi uzwojeniami, bo ich zadanie polega głównie na likwidowaniu problematycznych zjawisk, a nie na redukcji oporu. Mówienie o rezystancji w kontekście pracy silnika może powodować mylne wrażenie, że obniżenie oporu to klucz do lepszej wydajności. Na dodatek, pojawia się też mylny pomysł, że uzwojenia pomocnicze mogą zapobiegać rozbieganiu się silnika w momencie, gdy obciążenie spada. Tak naprawdę ich rolą jest stabilizacja pracy silnika, co oznacza, że eliminują negatywne zjawiska, które mogą wystąpić przy zmiennym obciążeniu. Na koniec, odpowiedź, że uzwojenia pomocnicze wytwarzają napięcie remanentu, to też nie jest trafna informacja, bo to napięcie pochodzi z magnesów trwałych lub uzwojeń głównych, a nie pomocniczych. Ogólnie rzecz biorąc, ważne jest, żeby rozumieć te różnice, bo są kluczowe przy projektowaniu i użytkowaniu silników prądu stałego w przemyśle.

Pytanie 7

Który symbol graficzny w ideowym schemacie jednoliniowym instalacji elektrycznej obrazuje łącznik ze schematu wieloliniowego pokazany na rysunku?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybór innej opcji niż A może wynikać z kilku nieporozumień dotyczących interpretacji symboli graficznych w schematach instalacji elektrycznych. Symbol graficzny łącznika jest wyraźnie zdefiniowany w normach branżowych, co oznacza, że każda niepoprawna odpowiedź może być rezultatem błędnej analizy rysunku lub niewłaściwego skojarzenia z innymi symbolami. Wiele osób mylnie może interpretować inne symbole, takie jak te używane do reprezentacji innych elementów elektrycznych, na przykład wyłączników, co prowadzi do zamieszania. Ponadto, w przypadku schematów wieloliniowych, istotne jest zrozumienie, że każdy element powinien być przedstawiony w sposób umożliwiający łatwe zrozumienie jego roli w instalacji. Błędem jest również brak znajomości standardów, co prowadzi do mylnych wniosków o funkcji poszczególnych symboli. Często zdarza się, że osoby analizujące rysunki schematów nie zwracają uwagi na szczegóły, takie jak kierunki linii czy sposób łączenia symboli, co jest kluczowe dla prawidłowego odczytu i interpretacji. Aby poprawić swoje umiejętności w tej dziedzinie, warto zapoznać się z dokumentacją techniczną oraz normami, które dokładnie opisują każdy element i jego graficzną reprezentację.

Pytanie 8

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Regulator temperatury.
B. Przekaźnik czasowy.
C. Przekaźnik priorytetowy.
D. Automat zmierzchowy.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 9

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±0,35 mA
B. ±2,35 mA
C. ±0,02 mA
D. ±0,37 mA
Bezpośrednia wartość błędu pomiaru natężenia prądu obliczana jest na podstawie specyfikacji urządzenia oraz uzyskanego wyniku. W tym przypadku multimetr wyświetlił wynik 35,00 mA, a dokładność pomiaru wynosi ±(1 % + 2 cyfry). Aby obliczyć bezwzględną wartość błędu, najpierw należy obliczyć 1% z uzyskanej wartości. 1% z 35 mA to 0,35 mA. Następnie dodajemy 2 cyfry, co w przypadku pomiaru natężenia prądu oznacza 0,02 mA. Sumując te dwie wartości, otrzymujemy ±(0,35 mA + 0,02 mA) = ±0,37 mA. Takie podejście do obliczeń jest zgodne z dobrą praktyką w pomiarach elektrycznych, która uwzględnia zarówno procentowy błąd pomiaru, jak i błędy stałe, co jest kluczowe przy ocenie precyzji pomiarów. Dobrze dobrany multimetr oraz zrozumienie zasad obliczania błędów pomiarowych są niezbędne w laboratoriach oraz w zastosowaniach przemysłowych, gdzie precyzja i dokładność odgrywają istotną rolę.

Pytanie 10

Na którym rysunku przedstawiono narzędzie niezbędne do formowania oczek na przewodzie instalacyjnym?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Odpowiedź B jest poprawna, ponieważ szczypce do zdejmowania izolacji, które zobrazowane są w tym rysunku, są kluczowym narzędziem w procesie formowania oczek na przewodach instalacyjnych. Ich główną funkcją jest precyzyjne usunięcie izolacji z końców przewodów bez uszkodzenia rdzenia, co jest niezbędne do uzyskania solidnych połączeń elektrycznych. W praktyce, zastosowanie takich szczypiec minimalizuje ryzyko zwarcia oraz poprawia jakość połączeń, co jest istotne w kontekście bezpieczeństwa instalacji. Przykładowo, w trakcie prac instalacyjnych, stosowanie szczypiec ułatwia nie tylko przygotowanie przewodów do połączenia, ale także pozwala na szybkie i efektywne wykonanie napraw, co jest zgodne z zasadami dobrej praktyki elektrycznej. Warto również zaznaczyć, że zgodnie z normami branżowymi, właściwe formowanie oczek na przewodach znacząco wpływa na trwałość oraz niezawodność instalacji elektrycznych.

Pytanie 11

Do czego przeznaczone są kleszcze przedstawione na ilustracji?

Ilustracja do pytania
A. Do formowania oczek na końcach żył jednodrutowych.
B. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
C. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
D. Do montażu zacisków zakleszczających.
Kleszcze do przewodów elektrycznych mają różne zastosowania, ale nie każde narzędzie pasuje do wszystkich połączeń. Jak patrzymy na te odpowiedzi, ważne, żeby zrozumieć, że zaciskanie końcówek tulejkowych na żyłach wielodrutowych, montowanie zacisków zakleszczających czy zaprasowywanie końców przewodów wymagają różnych narzędzi i metod. Zaciskanie tulejek najczęściej robimy kleszczami, które mają szczęki przystosowane do tego, żeby dobrze uformować końcówki. Natomiast w przypadku zacisków zakleszczających potrzebne są kleszcze, które mają odpowiedni kształt, żeby wszystko pasowało idealnie i nie uszkodziło materiału. A zaprasowywanie końców przewodów w połączeniach wsuwanych to już inna bajka, bo potrzeba do tego specjalnych narzędzi, które są do tego stworzone, żeby połączenia były szczelne i stabilne. Wybierając złe narzędzia czy metody, można popełnić błędy, które później mogą prowadzić do awarii elektrycznych, więc warto trzymać się tych dobrych praktyk i norm. Zwracaj uwagę na specyfikacje narzędzi i ich zastosowania, bo to naprawdę istotne dla bezpieczeństwa i efektywności pracy z elektryką.

Pytanie 12

Rysunek przedstawia symbol graficzny przewodu

Ilustracja do pytania
A. FB
B. PEN
C. PE
D. FE
Symbol przedstawiony na rysunku rzeczywiście oznacza przewód ochronny, który w zgodzie z normą PN-EN 60617 jest identyfikowany skrótem "PE" (Protective Earth). Przewód ten jest kluczowy w systemach elektrycznych, ponieważ zapewnia bezpieczeństwo poprzez odprowadzanie potencjalnych prądów upływowych do ziemi, co minimalizuje ryzyko porażenia prądem. W praktyce, przewód PE jest często stosowany w instalacjach elektrycznych w budynkach, gdzie pełni rolę ochronną dla urządzeń oraz użytkowników. Warto również zauważyć, że w systemach zasilania trójfazowego, przewód ochronny jest wymagany, aby spełnić normy bezpieczeństwa, takie jak norma IEC 60364. Przewód PE powinien być zawsze jasno oznakowany zielono-żółtym kolorem, aby umożliwić łatwą identyfikację w instalacjach elektrycznych. Zastosowanie tego przewodu jest nie tylko praktyczne, ale i zgodne z zasadami ochrony przeciwwybuchowej w środowiskach, gdzie mogą występować niebezpieczne substancje.

Pytanie 13

Na którym rysunku przedstawiono adapter z gniazda E27 na gniazdo GU10?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Adapter oznaczony literą A jest prawidłową odpowiedzią, ponieważ łączy gniazdo E27 z gniazdem GU10, co czyni go niezwykle praktycznym elementem w zastosowaniach oświetleniowych. Gniazdo E27, szerokie i standardowe, jest powszechnie stosowane w oprawach żarówkowych, co pozwala na łatwe wkręcanie tradycyjnych żarówek. Z kolei gniazdo GU10, charakteryzujące się dwoma bolcami, jest szeroko używane w nowoczesnych żarówkach halogenowych oraz LED, dając możliwość uzyskania pożądanego efektu świetlnego i oszczędności energii. W praktyce adaptery tego typu ułatwiają modernizację oświetlenia, umożliwiając użytkownikom wykorzystanie różnych typów żarówek, nawet w istniejących instalacjach. Zastosowanie adapterów E27-GU10 jest zgodne z dobrymi praktykami branżowymi, które zalecają elastyczność i dostosowanie systemów oświetleniowych do potrzeb użytkowników.

Pytanie 14

Aby zweryfikować ciągłość przewodów w kablu YDY 4x2,5 mm2, jaki sprzęt należy zastosować?

A. miernika izolacji
B. wskaźnika kolejności faz
C. omomierza
D. mostka LC
Użycie omomierza do sprawdzenia ciągłości żył w przewodzie YDY 4x2,5 mm2 jest właściwym wyborem, ponieważ omomierz jest urządzeniem pomiarowym, które pozwala na dokładne zmierzenie oporu elektrycznego. W przypadku sprawdzania ciągłości żył, omomierz umożliwia wykrycie ewentualnych przerw w obwodzie, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej. Przykładowo, podczas montażu instalacji elektrycznych w budynkach, konieczne jest potwierdzenie, że wszystkie przewody są prawidłowo podłączone i nie wykazują zbyt wysokiego oporu, co mogłoby wskazywać na problemy z połączeniami lub uszkodzenia. Zgodnie z normą PN-EN 60364, sprawdzenie ciągłości przewodów ochronnych jest obowiązkowe przed oddaniem instalacji do użytku. Dobre praktyki zalecają wykonywanie pomiarów w warunkach, gdy przewody są odłączone od źródła zasilania, co zwiększa bezpieczeństwo oraz dokładność pomiarów. Omomierz jest więc narzędziem nie tylko funkcjonalnym, ale i niezbędnym w codziennej pracy elektryka.

Pytanie 15

Na przyrządzie ustawionym na zakres 300 V zmierzono napięcie w sieci, które wynosi 230 V. Do wykonania pomiaru zastosowano miernik analogowy o dokładności w klasie 1,5. Jaki jest błąd bezwzględny uzyskanego pomiaru?

A. ± 4,40 V
B. ± 4,30 V
C. ± 4,50 V
D. ± 4,60 V
Poprawna odpowiedź to ± 4,50 V, co wynika z zastosowania wzoru do obliczania błędu bezwzględnego pomiaru. Klasa dokładności miernika analogowego oznacza, że maksymalny błąd pomiarowy wynosi 1,5% zakresu pomiarowego. W przypadku zakresu 300 V, maksymalny błąd obliczamy jako 1,5% z 300 V, co daje 4,5 V. To oznacza, że rzeczywisty wynik pomiaru napięcia sieciowego 230 V może różnić się od wartości rzeczywistej o maksymalnie ± 4,50 V. Praktyczne zastosowanie tego typu pomiarów związane jest z zapewnieniem bezpieczeństwa w instalacjach elektrycznych oraz monitorowaniem ich parametrów, co jest kluczowe dla efektywnego zarządzania energią. W branży elektrycznej stosuje się różne klasy dokładności w zależności od wymaganych precyzji pomiarów, dlatego zrozumienie tych standardów jest niezbędne dla inżynierów i techników zajmujących się systemami zasilania. Odpowiednia interpretacja wyników pomiarów, z uwzględnieniem błędów, ma fundamentalne znaczenie dla analizy i diagnozowania układów elektrycznych.

Pytanie 16

Której końcówki wkrętaka należy użyć do demontażu wyłącznika nadprądowego z szyny TH 35?

Ilustracja do pytania
A. Końcówki 3.
B. Końcówki 4.
C. Końcówki 1.
D. Końcówki 2.
Końcówka 2. jest właściwym rozwiązaniem, ponieważ wyłączniki nadprądowe montowane na szynie TH 35 wymagają użycia wkrętaka o płaskiej końcówce do ich demontażu. Końcówka płaska zapewnia odpowiednią stabilność i precyzję podczas wkręcania i wykręcania śrub mocujących, co jest kluczowe w kontekście pracy z instalacjami elektrycznymi. Użycie odpowiedniego narzędzia minimalizuje ryzyko uszkodzenia złączy oraz zwiększa bezpieczeństwo pracy. Przykładowo, używając końcówki płaskiej, można z łatwością uzyskać dostęp do wyłącznika, co jest szczególnie istotne w przypadku rutynowych przeglądów lub konserwacji instalacji elektrycznych. Standardy branżowe zalecają korzystanie z narzędzi, które są dostosowane do specyfiki montażu, dlatego znajomość odpowiednich końcówek wkrętaka, jak w tym przypadku, jest niezbędna dla każdego elektryka.

Pytanie 17

Parametry której maszyny elektrycznej zapisano na przedstawionej tabliczce znamionowej?

Ilustracja do pytania
A. Silnika jednofazowego.
B. Transformatora jednofazowego.
C. Dławika.
D. Prądnicy synchronicznej.
Tabliczka znamionowa, którą analizujesz, zawiera kluczowe informacje dotyczące silnika jednofazowego. W szczególności, moc znamionowa wynosząca 1.1 kW oraz prąd znamionowy 7.1 A są typowe dla tego typu silników, które są powszechnie stosowane w aplikacjach domowych oraz przemysłowych. Napięcie 230 V / 50 Hz wskazuje na standardowe parametry zasilania w Europie, co czyni ten silnik odpowiednim do zasilania z sieci elektrycznej. Dodatkowo, prędkość obrotowa 1400 min-1 sugeruje, że silnik jest przystosowany do zastosowań wymagających umiarkowanej prędkości, takich jak małe pompy czy wentylatory. Również obecność kondensatora rozruchowego, o wartości 160 µF/320V, jest charakterystyczna dla silników jednofazowych, które w przeciwieństwie do silników trójfazowych, często wymagają takiego elementu do uruchomienia. Takie silniki są szeroko stosowane w codziennych urządzeniach, takich jak pralki czy odkurzacze, co potwierdza ich znaczenie w nowoczesnym świecie. Zrozumienie tych parametrów jest kluczowe dla prawidłowego doboru silnika do konkretnej aplikacji, co jest zgodne z zasadami efektywnego projektowania systemów elektrycznych.

Pytanie 18

Jaką maksymalną wartość impedancji pętli zwarcia należy przyjąć w trójfazowym układzie elektrycznym o napięciu 230/400 V, aby zabezpieczenie przeciwporażeniowe działało prawidłowo w przypadku uszkodzenia izolacji, zakładając, że zasilanie tego obwodu ma być odłączone przez instalacyjny wyłącznik nadprądowy B20?

A. 3,83 Ω
B. 2,30 Ω
C. 0,56 Ω
D. 1,15 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, przy zastosowaniu instalacyjnego wyłącznika nadprądowego B20, wynosi 2,30 Ω. Zrozumienie tej wartości jest kluczowe dla zapewnienia skutecznej ochrony przeciwporażeniowej, ponieważ wyłącznik nadprądowy B20 ma charakterystykę, która wymaga odpowiedniej impedancji, aby w przypadku zwarcia mógł zadziałać w odpowiednim czasie. Przy wartościach impedancji powyżej 2,30 Ω czas wyłączenia może być zbyt długi, co zwiększa ryzyko porażenia prądem. Przykładowo, w praktyce, przy pomiarach używa się specjalistycznych instrumentów do określenia impedancji pętli zwarcia, co pozwala na weryfikację zgodności instalacji z normami, takimi jak PN-IEC 60364. Ponadto, dla zapewnienia bezpieczeństwa, projektowanie instalacji elektrycznych powinno obejmować dokładne obliczenia oraz pomiary impedancji, co wpisuje się w dobre praktyki inżynierskie.

Pytanie 19

Który przekaźnik oznacza się przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Czasowy.
B. Priorytetowy.
C. Impulsowy.
D. Wielofunkcyjny.
Przekaźnik impulsowy, który widzisz na rysunku w pytaniu, to fajne urządzenie, które jest często używane w automatyce. Działa tak, że przy każdym kolejnym impulsie prądu zmienia stan obwodu. To pozwala na lepsze zarządzanie sygnałami i sterowanie różnymi procesami. W praktyce można go spotkać w systemach zabezpieczeń, automatycznych włącznikach światła czy w urządzeniach do zdalnego sterowania. Jak to działa? Pierwszy impuls zamyka obwód, a następny go otwiera. Dzięki temu można robić różne rzeczy, takie jak liczenie impulsów czy przełączanie. Fajnie, że są normy IEC 60947, które mówią o bezpieczeństwie i niezawodności tych przekaźników, bo to sprawia, że są naprawdę ważnym elementem w nowoczesnych systemach sterowania.

Pytanie 20

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Wymiana uszkodzonych gniazd wtyczkowych
B. Instalacja nowych punktów świetlnych
C. Zamiana zużytych urządzeń na nowe
D. Przesunięcie miejsc montażu opraw oświetleniowych
Wymiana uszkodzonych gniazd wtyczkowych jest kluczowym elementem prac konserwacyjnych instalacji elektrycznych w mieszkaniach oraz budynkach użyteczności publicznej. Gniazda wtyczkowe stanowią bezpośredni punkt dostępu do energii elektrycznej, a ich uszkodzenie może prowadzić do poważnych zagrożeń, takich jak zwarcia, pożary czy porażenia prądowe. Właściwe utrzymanie gniazd wtyczkowych zgodnie z normami PN-IEC 60364 oraz PN-EN 60669 zapewnia bezpieczeństwo użytkowników i niezawodność instalacji. Wymiana uszkodzonych gniazd powinna być przeprowadzana przez wykwalifikowanych elektryków, którzy potrafią ocenić stan instalacji oraz wybrać odpowiednie komponenty do wymiany. Praktycznym przykładem jest sytuacja, gdy w wyniku uszkodzenia mechanicznego gniazdo nie działa poprawnie, co może wpływać na funkcjonalność podłączonych urządzeń. Regularne przeglądy oraz wymiana uszkodzonych części to praktyka zgodna z zasadami bezpieczeństwa i efektywności energetycznej.

Pytanie 21

Instalacja elektryczna, której odbiorniki oznaczone są symbolem graficznym pokazanym na rysunku

Ilustracja do pytania
A. ma uziemione przewodzące obudowy odbiorników.
B. nie posiada ochrony przed dotykiem pośrednim.
C. jest zasilana bardzo niskim napięciem.
D. posiada podwójną lub wzmocnioną izolację.
Odpowiedź "jest zasilana bardzo niskim napięciem" jest prawidłowa, ponieważ symbol graficzny na rysunku oznacza urządzenie elektryczne klasy III. Urządzenia tej klasy są projektowane do pracy w systemach zasilanych bardzo niskim napięciem (SELV - Safety Extra Low Voltage), co znacząco zwiększa bezpieczeństwo użytkowania. Dzięki zastosowaniu niskiego napięcia, ryzyko wystąpienia porażenia elektrycznego jest minimalne, co czyni te urządzenia idealnymi do użytku w warunkach, gdzie występuje zwiększone ryzyko kontaktu z wodą lub wilgocią. W praktyce, urządzenia klasy III są szeroko stosowane w instalacjach, takich jak oświetlenie w łazienkach, zasilanie urządzeń w ogrodach czy w obiektach publicznych. Standardy elektrotechniczne, takie jak IEC 61140, definiują zasady bezpieczeństwa dla tego typu urządzeń, co potwierdza ich zaufanie w zastosowaniach na całym świecie.

Pytanie 22

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. rtęci owo-żarowa.
B. rtęciowa.
C. halogenowa.
D. sodowa.
Lampa halogenowa, jaką widzisz na zdjęciu, jest doskonałym przykładem nowoczesnego źródła światła, które charakteryzuje się wyższą efektywnością energetyczną oraz dłuższą żywotnością w porównaniu do tradycyjnych żarówek. Jej budowa składa się z małej bańki, w której znajduje się drucik wolframowy, oraz ze specjalnego naczynia kwarcowego lub szklanego wypełnionego gazem halogenowym, co pozwala na regenerację wolframu i zmniejsza jego parowanie. Dzięki temu, lampa halogenowa emituje jasne i naturalne światło, które jest doskonałe do oświetlenia wnętrz oraz zastosowań w oświetleniu akcentującym. Warto dodać, że lampy halogenowe są powszechnie stosowane w domach, biurach oraz w oświetleniu wystawowym, a ich zastosowanie w przemyśle i motoryzacji jest również znaczące. Przemiany w sektorze oświetleniowym wskazują na rosnącą popularność źródeł LED, jednak lampy halogenowe pozostają cenione za swoje unikalne właściwości w określonych zastosowaniach, takich jak reflektory czy lampy punktowe.

Pytanie 23

Który symbol graficzny oznacza na planie instalacji elektrycznej sposób prowadzenia przewodów przedstawiony na zdjęciu?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Odpowiedź C faktycznie jest trafna, bo symbol podany w tej opcji świetnie pokazuje, jak powinny być prowadzone przewody w listwie przypodłogowej, co można zobaczyć na zdjęciu. Wiele instalacji elektrycznych korzysta z listew przypodłogowych, bo to nie tylko estetyczne, ale też bezpieczne. Dzięki temu przewody są dobrze schowane i nie wystają na wierzch, co na pewno jest lepsze w projektowaniu wnętrz. Z tego, co wiem, normy IEC również zalecają używanie takich kanałów kablowych, jak w symbolu C, aby zapewnić bezpieczeństwo i przestrzegać przepisów budowlanych. Takie rozwiązanie można spotkać w biurach, mieszkaniach, a nawet w miejscach publicznych, gdzie estetyka i bezpieczeństwo są bardzo ważne.

Pytanie 24

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
B. pomiar rezystancji uziemienia
C. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
D. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
Ocena dostępu do urządzeń, sprawdzenie oznaczenia obwodów i zabezpieczeń oraz sprawdzenie poprawności oznaczenia przewodów neutralnych i ochronnych to istotne elementy oględzin instalacji elektrycznej, które powinny być wykonywane regularnie. Ocena dostępu do urządzeń jest kluczowa, ponieważ zapewnia, że personel może wygodnie i bezpiecznie pracować z instalacją, a także szybko reagować w przypadku awarii. Sprawdzanie oznaczenia obwodów i zabezpieczeń oraz przewodów neutralnych i ochronnych pozwala na identyfikację potencjalnych problemów oraz zrozumienie struktury instalacji, co jest niezbędne do skutecznego zarządzania nią. Problemy takie jak niewłaściwe oznaczenie mogą prowadzić do poważnych zagrożeń, w tym do niebezpieczeństwa porażenia prądem lub uszkodzenia sprzętu. Powszechnym błędem jest mylenie tych elementów z pomiarem rezystancji uziemienia. Wiedza o różnicy między tymi czynnościami jest kluczowa, ponieważ każde z nich ma swoje unikalne cele i metody, a ich pomylenie może prowadzić do niewłaściwych wniosków co do stanu instalacji. Istotne jest, aby każda z tych czynności była przeprowadzana zgodnie z obowiązującymi normami i standardami, co gwarantuje bezpieczeństwo i efektywność systemu elektrycznego.

Pytanie 25

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. montażu nowych punktów świetlnych
B. czyszczenia lamp oświetleniowych
C. czyszczenia urządzeń w rozdzielniach
D. wymiany gniazd zasilających
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 26

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 5 do 10
B. 2 do 3
C. 3 do 5
D. 10 do 20
Odpowiedź "2 do 3" jest poprawna, ponieważ wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z działają w granicach krotności prądu znamionowego na poziomie od 2 do 3. To oznacza, że wyzwalacz zareaguje w przypadku, gdy prąd zwarciowy osiągnie wartość 2-3 razy wyższą od prądu znamionowego urządzenia. Wyłączniki te są przeznaczone do ochrony obwodów z wysoką odpornością na prądy rozruchowe, co czyni je idealnymi do stosowania w instalacjach z urządzeniami takimi jak transformatory czy silniki elektryczne. Standardy takie jak PN-EN 60947-2 definiują wymagania dotyczące wyłączników, a ich zastosowanie w praktyce pomaga w minimalizacji ryzyka uszkodzenia instalacji oraz zapewnienia bezpieczeństwa użytkowników. Przykładem może być sytuacja, w której w obwodzie z silnikiem występuje krótki impuls prądowy, co może prowadzić do zadziałania wyłącznika, zanim dojdzie do poważniejszych uszkodzeń. Stosując wyłączniki typu Z, można skutecznie ograniczyć ryzyko zwarć w obwodach o niskiej tolerancji na prądy zwarciowe.

Pytanie 27

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. zweryfikowanie ciągłości połączeń w instalacji
B. wykonanie pomiaru rezystancji uziemienia
C. przeprowadzenie pomiarów impedancji pętli zwarcia
D. określenie czasu oraz prądu zadziałania wyłącznika RCD
Pomiar impedancji pętli zwarcia jest kluczowym działaniem w ocenie skuteczności ochrony przed porażeniem elektrycznym w systemie TN. Zgodnie z normą PN-EN 61230, impedancja pętli zwarcia wpływa na czas zadziałania zabezpieczeń, co jest istotne dla bezpieczeństwa instalacji. W przypadku zwarcia, niższa impedancja oznacza, że prąd zwarciowy będzie wyższy, co z kolei przyspiesza działanie wyłączników automatycznych. Praktycznie, przeprowadzając pomiar, możemy określić, czy wartości impedancji mieszczą się w dopuszczalnych normach, co pozwala na weryfikację, czy zabezpieczenia zadziałają w wystarczająco krótkim czasie, aby zminimalizować ryzyko porażenia użytkowników. Takie pomiary są również wymagane podczas odbiorów instalacji elektrycznych, aby zapewnić zgodność z normami oraz bezpieczeństwo użytkowników.

Pytanie 28

W którym obwodzie sieci elektrycznej mierzona jest impedancja pętli zwarcia przez miernik parametrów instalacji włączony jak na rysunku?

Ilustracja do pytania
A. L-L
B. L-N
C. N-PE
D. L-PE
Zgadza się, pomiar impedancji pętli zwarcia w tym przypadku jest dokonywany między przewodem fazowym (L) a przewodem ochronnym (PE). W kontekście ochrony przeciwporażeniowej, jest to kluczowy proces, który pozwala na ocenę efektywności systemu zabezpieczeń w instalacji elektrycznej. Poprawne połączenie między L i PE jest niezbędne do zapewnienia, że w przypadku zwarcia doziemnego, prąd zwarciowy będzie mógł przepływać do ziemi, co wywoła działanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe. Zgodnie z normą PN-IEC 60364, pomiar impedancji pętli zwarcia powinien być wykonywany regularnie w celu utrzymania bezpieczeństwa instalacji. W praktyce oznacza to, że każdy instalator powinien umieć interpretować wyniki tych pomiarów oraz wdrażać zalecenia dotyczące poprawy skuteczności ochrony, na przykład poprzez odpowiednie uziemienie. Takie działania są kluczowe, aby zminimalizować ryzyko porażenia prądem oraz pożarów spowodowanych błędami w instalacji. Jakiekolwiek odstępstwa od tej procedury mogą prowadzić do poważnych konsekwencji dla użytkowników oraz mienia.

Pytanie 29

Jakie akcesoria, oprócz szczypiec, trzeba pobrać z magazynu, aby zasilić zamontowany plafon sufitowy, kiedy instalacja została wykonana przewodami YDYp?

A. Ściągacz izolacji, nóż monterski, wkrętak
B. Nóż monterski, wiertarkę, ściągacz izolacji
C. Lutownicę, wiertarkę, ściągacz izolacji
D. Wiertarkę, lutownicę, wkrętak
Wybór narzędzi w odpowiedziach niepoprawnych wskazuje na błędne zrozumienie podstawowych zasad związanych z instalacjami elektrycznymi i ich wykonaniem. Lutownica, mimo że jest narzędziem użytecznym w niektórych pracach elektrycznych, nie jest konieczna w tym przypadku, ponieważ przewody YDYp są zazwyczaj łączone poprzez skręcanie lub złączki, a nie lutowanie. Wiertarka również nie jest narzędziem niezbędnym do podłączenia plafonu, gdyż jej zastosowanie ogranicza się głównie do wiercenia otworów w sufitach, co nie jest wymagane, jeżeli montaż może odbyć się na gotowych mocowaniach. Wykorzystanie wkrętaka jest istotne, jednak w połączeniu z niewłaściwymi narzędziami, nie spełnia ono swojej funkcji w kontekście prawidłowego podłączenia. Błędy myślowe, które mogą prowadzić do takich wniosków, to m.in. mylenie funkcji narzędzi oraz niezrozumienie specyfikacji stosowanych kabli i ich użycia w praktyce. Dla zapewnienia bezpieczeństwa oraz efektywności pracy, ważne jest, aby używać odpowiednich narzędzi zgodnie z ich przeznaczeniem oraz z zachowaniem zasad bezpieczeństwa, co zwiększa jakość wykonanej instalacji.

Pytanie 30

Aparat pokazany na zdjęciu jest wykorzystywany do

Ilustracja do pytania
A. ograniczania przepięć.
B. wyłączania prądów roboczych.
C. ograniczania napięć.
D. wykrywania prądów upływu.
Wybór odpowiedzi dotyczącej wykrywania prądów upływu, ograniczania napięć lub wyłączania prądów roboczych wskazuje na pewne nieporozumienie dotyczące funkcji poszczególnych urządzeń w systemach elektrycznych. W przypadku wykrywania prądów upływu, mówimy o urządzeniach takich jak wyłączniki różnicowoprądowe, które mają na celu ochronę przed porażeniem prądem oraz zapobieganie pożarom spowodowanym przez prądy upływu. Ograniczniki napięć, choć mogą brzmieć podobnie, są innymi urządzeniami, które nie są przeznaczone do ograniczania chwilowych wzrostów napięcia, ale raczej do stabilizacji napięcia roboczego w systemie. Odpowiedź dotycząca wyłączania prądów roboczych w ogóle nie odnosi się do tematu ograniczania przepięć, a koncentruje się na zarządzaniu obciążeniem w instalacji elektrycznej. Warto zauważyć, że ograniczniki przepięć pełnią unikalną funkcję ochrony przed specyficznymi zagrożeniami, a ich skuteczność jest kluczowa w kontekście nowoczesnych instalacji elektrycznych, szczególnie w obiektach narażonych na wyładowania atmosferyczne. Ignorowanie tej właściwości prowadzi do poważnych konsekwencji, takich jak uszkodzenie sprzętu, co widać w praktyce, gdy urządzenia nie są odpowiednio zabezpieczone przed nagłymi skokami napięcia.

Pytanie 31

Na którym rysunku przedstawiono schemat układu do wykonania pomiaru impedancji pętli zwarcia instalacji w układzie TN?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Rysunek B przedstawia właściwy schemat układu do pomiaru impedancji pętli zwarcia w instalacjach TN, co jest kluczowym aspektem w zapewnieniu bezpieczeństwa elektrycznego. W instalacji TN, systemy uziemienia są zintegrowane z przewodami neutralnymi, co pozwala na skuteczne odprowadzenie prądu zwarciowego do ziemi. Schemat układu pomiarowego, zawierającego źródło zasilania, miernik impedancji oraz odpowiednie przewody (fazowy, neutralny i ochronny), umożliwia dokładne określenie wartości impedancji pętli zwarcia. Przykładowo, w przypadku awarii, szybka detekcja impedancji pętli pozwala na skuteczne działanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe, co z kolei przyczynia się do minimalizacji ryzyka porażenia prądem elektrycznym oraz zabezpieczenia osób i mienia przed skutkami zwarcia. Dobre praktyki wskazują na regularne wykonywanie takich pomiarów zgodnie z normami PN-EN 61557-3, co zapewnia nie tylko poprawne działanie instalacji, ale również zgodność z regulacjami prawnymi i standardami branżowymi.

Pytanie 32

Jaką klasę ochronności przypisuje się oprawie oświetleniowej, która nie ma zacisku ochronnego i jest zasilana ze źródła napięcia SELV?

A. II
B. 0
C. I
D. III
Klasy ochronności urządzeń elektrycznych mają kluczowe znaczenie dla zapewnienia bezpieczeństwa ich użytkowania. Odpowiedzi I, 0 oraz II nie są poprawne w kontekście oprawy zasilanej niskonapięciowym źródłem SELV. Klasa I odnosi się do urządzeń, które posiadają zacisk ochronny i wymagają podłączenia do uziemienia, co nie jest spełnione w przypadku oprawy bez zacisku ochronnego. Klasa 0 dotyczy urządzeń, które nie mają ochrony przeciwporażeniowej i są niebezpieczne w użytkowaniu, ponieważ nie oferują żadnego zabezpieczenia przed zwarciem. Z kolei klasa II odnosi się do urządzeń, które mają podwójną izolację i nie wymagają uziemienia. Odpowiedź na to pytanie wymaga zrozumienia różnic między tymi klasami oraz ich zastosowania w praktyce. Większość błędów w wyborze odpowiedzi wynika z nieznajomości zasad dotyczących bezpieczeństwa elektrycznego oraz z mylenia klasyfikacji opraw w kontekście ich konstrukcji i zastosowania. Ważne jest, aby zwracać uwagę na oznaczenia na urządzeniach oraz stosować się do norm i standardów, które regulują te kwestie. W kontekście opraw oświetleniowych klasa ochronności III to gwarancja, że użytkownik nie będzie narażony na niebezpieczeństwo, a projektanci oświetlenia mogą skutecznie wykorzystywać takie oprawy w różnych środowiskach.

Pytanie 33

Którym symbolem oznacza się, przedstawiony na rysunku, przewód do wykonania instalacji oświetleniowej wtynkowej?

Ilustracja do pytania
A. OMYp
B. YDYp
C. SMYp
D. YDYtżo
Wybór niewłaściwych symboli przewodów w kontekście instalacji oświetleniowych wtynkowych może prowadzić do poważnych nieprawidłowości oraz zagrożeń. Odpowiedzi takie jak "OMYp", "YDYp" czy "SMYp" nie spełniają wymogów dotyczących przewodów wtynkowych, co jest kluczowe w projektowaniu instalacji. Symbol "OMYp" wskazuje na przewód o podwyższonej elastyczności, który nie jest odpowiedni do instalacji wtynkowych, ponieważ jego konstrukcja nie zapewnia odpowiedniej ochrony w zamkniętych przestrzeniach, co jest niezgodne z normami bezpieczeństwa. Z kolei "YDYp" nie zawiera oznaczenia dotyczącego przewodu ochronnego, co jest fundamentalne, aby zabezpieczyć instalację przed wadami izolacji. Odpowiedź "SMYp" jest związana z przewodami stosowanymi w instalacjach mobilnych, co dodatkowo potwierdza, że nie powinny być one używane w instalacjach stacjonarnych. Błędny dobór symboli wynika często z braku znajomości specyfikacji technicznych oraz norm, takich jak PN-IEC 60364, które jasno określają, jakie przewody są odpowiednie w konkretnych zastosowaniach. Dostosowanie do tych standardów jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 34

Którego osprzętu instalacyjnego dotyczy przedstawiony fragment opisu?

Fragment opisu osprzętu instalacyjnego
W celu zabezpieczenia przed porażeniem prądem elektrycznym małych dzieci instaluje się modele ze specjalnymi przesłonami torów prądowych. Konstrukcja mechaniczna przesłony uniemożliwia włożenie długopisu, kredki czy innego przewodnika do toru prądowego.

Do uzyskania pełnego bezpieczeństwa stosuje się przesłony torów prądowych wyposażone dodatkowo w tzw. klucz uprawniający, uchylający przesłony torów prądowych.
A. Wtyczki kabla zasilającego.
B. Oprawki źródła światła.
C. Puszki łączeniowej.
D. Gniazda wtykowego.
Wybierając puszkę łączeniową, oprawkę źródła światła lub wtyczkę kabla zasilającego, można się trochę pogubić w tym, do czego one właściwie służą. Puszki łączeniowe są w porządku, bo łączą przewody i chronią je przed uszkodzeniami, ale nie mają nic wspólnego z ochroną przed prądem, co dotyczy gniazd wtykowych. Z kolei oprawki źródła światła tylko mocują żarówki, a nie chronią dzieci czy innych nieautoryzowanych osób. Wtyczki kabli zasilających, mimo że ważne do podłączenia urządzeń, nie mają żadnych mechanizmów zabezpieczających, które chroniłyby przed kontaktem z prądem. Dlatego, jeśli wskazujesz na te rzeczy jako odpowiedzi, to znaczy, że coś ci umknęło — gniazda wtykowe są kluczowe, gdy chodzi o bezpieczeństwo elektryczne w miejscach, gdzie bywają dzieci. Dobrze jest zapoznać się z normami dotyczącymi gniazd, które mówią dokładnie, jakie są wymagania związane z ich bezpieczeństwem i zastosowaniem w różnych miejscach.

Pytanie 35

Jaki rodzaj uziomu zastosowano w instalacji piorunochronnej przedstawionej na rysunku?

Ilustracja do pytania
A. Otokowy.
B. Promieniowy.
C. Pionowy.
D. Fundamentowy.
W tej sprawie z uziomami w instalacji piorunochronnej nie można pomylić się z fundamentowym, pionowym czy promieniowym. Uziom fundamentowy, jak wiemy, wiąże się z fundamentami budynku i ma na celu głównie ochronę elektryki w środku. Ale nie wszystko w tym temacie jest takie proste, bo nie chroni on przed piorunami tak, jak powinien. Uziom pionowy, który wprowadza elektrody w głąb ziemi, może być stosowany, gdy grunt nie przewodzi za dobrze, ale jego skuteczność w odprowadzaniu prądów piorunowych jest znacznie gorsza niż w przypadku uziomu otokowego. A z kolei promieniowy system, który rozchodzi się w promieniach od jednego punktu, rzadko się używa do ochrony przed piorunami, bo nie jest stabilny i niezawodny. Mieszanie tych różnych rozwiązań może prowadzić do błędnych wniosków na temat tego, jak skutecznie chronić budynek przed burzami. Każdy z tych uziomów ma swoje zastosowanie, ale nie zastąpią one sprawdzonego uziomu otokowego, co może skończyć się nieprzyjemnie w razie burzy.

Pytanie 36

Na którym schemacie połączeń przedstawiono zgodne z zamieszczonym planem instalacji podłączenie przewodów w puszce numer 3?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Niepoprawne odpowiedzi mogą wynikać z kilku typowych błędów myślowych i nieporozumień związanych z instalacjami elektrycznymi. Przede wszystkim, w schematach A, B i C często błędnie umieszczany jest przewód fazowy L, co może prowadzić do niewłaściwego działania obwodu oświetleniowego. W przypadku schematu A, przewód fazowy został połączony z przewodem neutralnym, co stwarza ryzyko zwarcia. W praktyce, takie połączenie nie tylko uniemożliwi załączenie światła, ale także może doprowadzić do uszkodzenia urządzeń elektrycznych oraz stanowić poważne zagrożenie dla bezpieczeństwa osób korzystających z instalacji. Schemat B z kolei mógłby sugerować, że przewód NE jest poprowadzony przez łącznik, co jest niezgodne z zasadami, gdyż neutralny przewód powinien być zawsze bezpośrednio połączony do źródła zasilania. Wreszcie, schemat C nie uwzględnia prawidłowego uziemienia, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników. Każde z tych podejść pokazuje, jak ważne jest przestrzeganie standardów, takich jak PN-IEC 60364, które nakładają obowiązek stosowania odpowiednich metod podłączeń oraz zabezpieczeń w instalacjach elektrycznych. Właściwe zrozumienie i przestrzeganie tych zasad jest kluczowe dla bezpieczeństwa oraz funkcjonalności instalacji elektrycznych.

Pytanie 37

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 6,6 Ω
B. 3,8 Ω
C. 2,3 Ω
D. 4,0 Ω
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 38

Zdjęcie przedstawia

Ilustracja do pytania
A. Megaomomierz.
B. Woltomierz probierczy.
C. Techniczny mostek pomiarowy
D. Woltomierz.
Megaomomierz jest specjalistycznym przyrządem pomiarowym używanym do określenia rezystancji w zakresie megaomów. Jego konstrukcja, w tym duża skala oraz pokrętło do wyboru zakresu pomiaru, są charakterystyczne dla tego typu urządzeń. Megaomomierze są często wykorzystywane w przemyśle elektrycznym i elektronicznym do testowania izolacji przewodów oraz komponentów, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych. Na przykład, podczas przeprowadzania testów izolacji w instalacjach elektrycznych, megaomomierz pozwala na wykrycie ewentualnych przecieków prądu, co może zapobiec poważnym awariom. Stosowanie megaomomierzy jest zgodne z normami branżowymi, takimi jak IEC 61557, które regulują wymagania dotyczące pomiarów parametrów elektrycznych w instalacjach. Dzięki właściwemu doborowi przyrządów i umiejętnemu przeprowadzaniu testów, można znacznie zwiększyć bezpieczeństwo oraz trwałość instalacji.

Pytanie 39

Jakie zmiany w parametrach obwodu elektrycznego wiążą się z zamianą przewodu typu ADYt 3×2,5 na przewód typu YDYt 3×2,5?

A. Obniżenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
B. Obniżenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
C. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
D. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
Wprowadzenie przewodu YDYt 3×2,5 zamiast ADYt 3×2,5 wiąże się z koniecznością zrozumienia różnic w ich konstrukcji i zastosowaniu. Przewody ADYt, będące przewodami aluminiowymi, mają ograniczone właściwości mechaniczne i elektryczne w porównaniu do ich miedziowych odpowiedników. Zmniejszenie wartości prądu dopuszczalnego długotrwale, jak sugerują niektóre odpowiedzi, jest wynikiem mylnego pojmowania właściwości materiałów. Przewody YDYt, wykonane z miedzi, mają znacznie lepsze przewodnictwo elektryczne, co oznacza, że mogą przewodzić większe prądy bez ryzyka przegrzania. Wartości rezystancji izolacji są także kluczowe przy ocenie jakości przewodu; błędne założenie, że wymiana na przewód YDYt zmniejsza tę rezystancję, jest niezgodne z rzeczywistością. Wyższa rezystancja izolacji w przewodach YDYt przyczynia się do ich większej niezawodności i odporności na czynniki atmosferyczne. Ponadto, w praktyce stosowanie przewodów miedziowych w miejscach o dużym obciążeniu prądowym jest normą, a ich zastosowanie w instalacjach elektrycznych zgodnych z normami IEC oraz PN zwiększa bezpieczeństwo i efektywność energetyczną. Zatem, przy wyborze przewodów elektrycznych, kluczowe jest zrozumienie ich specyfikacji oraz warunków, w jakich będą eksploatowane, aby uniknąć nieporozumień związanych z ich parametrami.

Pytanie 40

Które z przedstawionych na rysunkach narzędzi przeznaczone jest do zaciskania końcówek tulejkowych izolowanych?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Narzedzie przedstawione na rysunku C. to szczypce do zaciskania końcówek tulejkowych izolowanych, co czyni tę odpowiedź prawidłową. Te szczypce są specjalnie zaprojektowane do precyzyjnego zaciskania końcówek, co zapewnia solidne połączenie elektryczne. W praktyce, zastosowanie takich narzędzi jest kluczowe w instalacjach elektrycznych, gdzie jakość połączeń wpływa na bezpieczeństwo i niezawodność systemów. Szczypce te charakteryzują się odpowiednio wyprofilowanymi końcówkami, które umożliwiają równomierne rozłożenie siły podczas zaciskania, co zapobiega uszkodzeniu izolacji oraz samej końcówki. W standardach branżowych, takich jak IEC 60947, podkreśla się wagę stosowania właściwych narzędzi do obróbki końcówek w celu zapewnienia wysokiej jakości połączeń. Prawidłowo używane szczypce do zaciskania przyczyniają się do długotrwałej eksploatacji instalacji oraz minimalizują ryzyko awarii związanych z słabymi połączeniami elektrycznymi.