Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 18:19
  • Data zakończenia: 17 grudnia 2025 18:35

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zmierzone parametry rezystancji cewki stycznika umiejscowionej w obwodzie sterującym silnikiem wynoszą 0 Ω. Na tej podstawie można wnioskować, że

A. przewód neutralny jest odłączony
B. cewka stycznika działa prawidłowo
C. przewód fazowy jest odłączony
D. cewka stycznika jest uszkodzona
Pomiar rezystancji cewki stycznika wynoszący 0 Ω wskazuje na zwarcie w obwodzie, co sugeruje, że cewka stycznika jest uszkodzona. W normalnych warunkach cewka powinna mieć określoną rezystancję, zazwyczaj w zakresie od kilku omów do kilkuset omów, w zależności od specyfikacji. Cewki styczników są projektowane tak, aby w momencie włączenia generować pole magnetyczne, które uruchamia mechanizm zamykający styki. Zwarcie może być skutkiem zniszczenia izolacji lub uszkodzenia uzwojenia. Przykładem zastosowania tej wiedzy jest diagnostyka w układach sterowania silnikami, gdzie uszkodzone cewki mogą prowadzić do awarii całego systemu. W takich sytuacjach zgodnie z najlepszymi praktykami należy wymieniać uszkodzone komponenty, aby zapewnić niezawodność i bezpieczeństwo operacji, a także unikać potencjalnych zagrożeń elektrycznych. Zrozumienie tego zjawiska jest kluczowe dla techników i inżynierów pracujących w dziedzinie automatyki i elektrotechniki.

Pytanie 2

Dodatkowy przewód ochronny w instalacji wykonanej przewodem LYd 750 4x2,5 zamocowanej na uchwytach na ścianie piwnicy powinien być oznaczony symbolem

A. YDY 450/750 1x2,5
B. ADY 750 1x2,5
C. LYc 300/500 1x6
D. Dyd 750 1x4
Odpowiedź Dyd 750 1x4 jest poprawna, ponieważ oznaczenie to odnosi się do przewodu ochronnego, który jest zgodny z wymaganiami instalacji elektrycznych w budynkach. Zastosowanie przewodu Dyd 750 1x4 w instalacji LYd 750 4x2,5 na uchwytach na powierzchni ściany piwnicy zapewnia odpowiednią ochronę przed zagrożeniami elektrycznymi, takimi jak zwarcia czy przepięcia. Przewody ochronne muszą być odpowiednio dobrane do warunków pracy oraz obciążenia, a Dyd 750 1x4 spełnia te normy, zapewniając odporność na wysokie napięcia do 750V. W praktyce, stosowanie przewodów z oznaczeniem Dyd w instalacjach podnosi poziom bezpieczeństwa, ponieważ są one często używane do uziemienia oraz ochrony przed porażeniem elektrycznym. Dodatkowo, zgodnie z normami PN-IEC 60364, właściwy dobór przewodów w instalacjach elektrycznych jest kluczowy dla ich prawidłowego funkcjonowania i bezpieczeństwa użytkowników.

Pytanie 3

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Rozruch próbny urządzenia
B. Sprawdzenie stanu ochrony przeciwporażeniowej
C. Pomiar rezystancji uzwojeń stojana
D. Pomiar napięcia zasilania
Pomiar napięcia zasilania jest kluczowym elementem diagnostyki silników elektrycznych, jednak nie należy go klasyfikować jako badanie eksploatacyjne silnika w kontekście jego wewnętrznej analizy. W badaniach eksploatacyjnych koncentrujemy się na ocenie stanu technicznego komponentów silnika, takich jak uzwojenia czy ochrona przeciwporażeniowa. Pomiar rezystancji uzwojeń stojana pozwala na określenie stanu izolacji, a rozruch próbny urządzenia jest niezbędny do oceny jego wydajności i funkcjonalności. Podobnie, sprawdzenie stanu ochrony przeciwporażeniowej jest istotne dla zapewnienia bezpieczeństwa użytkowania. Pomiar napięcia zasilania, choć istotny, dotyczy warunków zewnętrznych, które nie wpływają bezpośrednio na wewnętrzny stan silnika, dlatego ta czynność nie jest częścią badań eksploatacyjnych silnika elektrycznego w węższym ujęciu.

Pytanie 4

Ile minimum osób powinno zajmować się pracami w warunkach szczególnego zagrożenia?

A. Jedna osoba
B. Trzy osoby
C. Cztery osoby
D. Dwie osoby
Odpowiedź, że co najmniej dwie osoby powinny wykonywać prace w warunkach szczególnego zagrożenia, jest zgodna z zasadami bezpieczeństwa i higieny pracy (BHP). W praktyce oznacza to, że w sytuacjach stwarzających ryzyko dla zdrowia lub życia, konieczne jest, aby jedna osoba mogła nie tylko wykonać dane zadanie, ale także zapewnić wsparcie oraz interwencję w przypadku nagłego wypadku. Taka zasada jest szczególnie ważna w środowiskach, gdzie występują czynniki niebezpieczne, takie jak substancje chemiczne, prace na wysokości czy w zamkniętych przestrzeniach. W odniesieniu do standardów OSHA (Occupational Safety and Health Administration) oraz normy ISO 45001, które dotyczą zarządzania bezpieczeństwem i zdrowiem w pracy, posiadanie co najmniej dwóch pracowników przy takich zadaniach jest kluczowe dla zapewnienia odpowiedniej reakcji na potencjalne zagrożenia. Przykładem może być sytuacja, w której jeden pracownik może doznać kontuzji lub stracić przytomność, a drugi będzie w stanie wezwać pomoc lub udzielić pierwszej pomocy, co może uratować życie. Dwuosobowa obsada w trudnych warunkach stanowi także dodatkowy element kontroli i bezpieczeństwa, co jest zalecane w wielu branżach, takich jak budownictwo czy przemysł chemiczny.

Pytanie 5

Jakie metody zapewniają ochronę przed porażeniem w instalacji fotowoltaicznej na stronie prądu stałego w przypadku uszkodzenia?

A. użycie automatycznego wyłączenia zasilania poprzez wyłączniki nadprądowe
B. wykonanie wszystkich elementów w II klasie ochronności
C. użycie automatycznego wyłączenia zasilania przez zastosowanie bezpieczników topikowych
D. umieszczenie wszystkich komponentów na izolowanym podłożu
Wykonanie urządzeń w II klasie ochronności oznacza, że są one zaprojektowane w taki sposób, aby zapewnić odpowiedni poziom bezpieczeństwa użytkownikom. Urządzenia te mają dodatkowe izolacje oraz nie wymagają podłączenia do uziemienia, co jest kluczowe w instalacjach fotowoltaicznych, gdzie prąd stały może stanowić zagrożenie w przypadku awarii. Przykładem zastosowania tego rozwiązania może być montaż paneli słonecznych, w których zastosowane komponenty są certyfikowane jako spełniające normy II klasy ochronności. W przypadku uszkodzenia instalacji, takie urządzenia zminimalizują ryzyko porażenia prądem, ponieważ są one zaprojektowane tak, by nie dopuścić do wystąpienia niebezpiecznych napięć na obudowie. Dodatkowo, stosowanie urządzeń w II klasie ochronności jest zgodne z normami IEC 61140, które definiują wymagania dotyczące ochrony osób przed porażeniem elektrycznym, co potwierdza ich praktyczną wartość na etapie projektowania i wdrażania instalacji fotowoltaicznych.

Pytanie 6

Która z poniższych przyczyn powoduje nagły wzrost obrotów w trakcie działania silnika bocznikowego prądu stałego?

A. Przerwa w uzwojeniu wzbudzenia
B. Zwarcie w obwodzie twornika
C. Zwarcie w uzwojeniu komutacyjnym
D. Przerwa w obwodzie twornika
Zgłębiając temat przyczyn nagłego wzrostu prędkości obrotowej silnika bocznikowego prądu stałego, warto zauważyć, że przedstawione niepoprawne odpowiedzi odnoszą się do różnych aspektów funkcjonowania silników elektrycznych. Zwarcie w obwodzie twornika może prowadzić do znacznego wzrostu prądu, co w praktyce skutkuje przeciążeniem silnika, ale nie bezpośrednio do wzrostu prędkości obrotowej. W rzeczywistości, zwarcie w obwodzie twornika powoduje spadek napięcia, co z kolei zmniejsza moment obrotowy i może prowadzić do jego uszkodzenia. Oba te zjawiska są sprzeczne z zasadami działania silników prądu stałego, w których to napięcie i przepływ prądu są kluczowe dla generowania momentu obrotowego. Z kolei zwarcie w uzwojeniu komutacyjnym, chociaż może wpływać na działanie komutatora, nie jest bezpośrednią przyczyną wzrostu prędkości obrotowej. W przypadku przerwy w obwodzie twornika, silnik w zasadzie przestaje działać, co również nie prowadzi do wzrostu prędkości. Warto zatem nieco lepiej zrozumieć mechanizmy działania silników, aby unikać mylnych interpretacji związanych z zagadnieniami elektrycznymi i ich wpływem na wydajność urządzeń. Kluczowe jest zrozumienie, jak różne komponenty silników wpływają na ich działanie oraz jakie zabezpieczenia są potrzebne, aby zminimalizować ryzyko uszkodzeń w wyniku nieprawidłowego działania.

Pytanie 7

Jakim przyrządem należy przeprowadzić bezpośredni pomiar mocy biernej?

A. Watomierza
B. Waromierza
C. Częstościomierza
D. Fazomierza
Waromierz jest specjalistycznym przyrządem pomiarowym, który umożliwia bezpośredni pomiar mocy biernej w obwodach prądu zmiennego. Działa na zasadzie pomiaru wartości mocy w układzie, w którym występuje przesunięcie fazowe między napięciem a prądem. Odpowiednią wartość mocy biernej można określić, wykorzystując wzór P = V * I * cos(ϕ), gdzie P to moc pozorna, a ϕ to kąt przesunięcia fazowego. Waromierz jest szczególnie przydatny w zastosowaniach przemysłowych, gdzie występują silniki elektryczne i inne urządzenia indukcyjne, które generują moc bierną. W praktyce, pomiar mocy biernej jest kluczowy dla optymalizacji efektywności energetycznej oraz dla zapobiegania nadmiernym kosztom związanym z opłatami za moc bierną. Przykładem zastosowania waromierza może być analiza obciążeń w zakładzie produkcyjnym, gdzie identyfikacja mocy biernej pozwala na odpowiednie dostosowanie charakterystyk urządzeń do potrzeb sieci energetycznej.

Pytanie 8

Korzystając z tabeli podaj jakimi przewodami, według sposobu A1, należy wykonać instalację podtynkową gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S?

Przekrój przewodów, mm²Obciążalność długotrwała przewodów, A
AYDYp 2×1,514,5
BYDYp 2×2,519,5
CYDYp 3×1,513,5
DYDYp 3×2,518
A. A.
B. C.
C. B.
D. D.
Wybór nieprawidłowych przewodów do instalacji gniazd jednofazowych zabezpieczonych wyłącznikiem nadprądowym B16A w sieci typu TN-S może prowadzić do wielu problemów związanych z bezpieczeństwem oraz niezawodnością systemu. Przy wyborze przewodów należy uwzględnić ich obciążalność, co oznacza, że muszą one być w stanie przewodzić prąd o określonym natężeniu bez ryzyka ich przegrzania. Wiele osób może mylnie uważać, że przewody o mniejszej średnicy będą wystarczające, jednak to prowadzi do poważnych zagrożeń, takich jak pożar instalacji elektrycznej. Na przykład, użycie przewodu o obciążalności mniejszej niż 16A skutkuje ryzykiem, że w przypadku przeciążenia przewód nagrzeje się, co z kolei może prowadzić do jego uszkodzenia oraz uszkodzenia izolacji. Kolejnym błędem jest niedocenienie znaczenia norm, takich jak PN-IEC 60364, które jasno określają zasady dotyczące doboru przewodów według ich zastosowania. Nieprzestrzeganie tych zasad może skutkować nie tylko niewłaściwym działaniem urządzeń, ale także stwarza poważne zagrożenia dla zdrowia i życia użytkowników. Dlatego tak istotne jest, aby każdy projektant i wykonawca instalacji elektrycznych miał pełną świadomość przepisów oraz standardów branżowych, a także wykazywał staranność w doborze komponentów instalacji.

Pytanie 9

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Która z przyczyn może odpowiadać za zwiększoną wartość ZS w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych
zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość Zs:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
B. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.
C. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
D. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
Odpowiedź wskazująca na poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie jest prawidłowa, ponieważ poluzowanie to prowadzi do wzrostu rezystancji w obwodzie, co z kolei prowadzi do zwiększenia wartości impedancji pętli zwarcia (ZS). W systemach elektrycznych, takich jak TN-S, ciągłość przewodów zasilających jest kluczowa dla zapewnienia bezpieczeństwa i efektywności instalacji. Poluzowany przewód może powodować niestabilne połączenia, co skutkuje nieprawidłowym działaniem urządzeń oraz może stwarzać zagrożenie pożarowe. W praktyce, aby zminimalizować ryzyko, należy regularnie kontrolować i testować wszystkie połączenia elektryczne, zgodnie z normami PN-IEC 60364, które podkreślają znaczenie właściwego montażu oraz konserwacji instalacji elektrycznych. Dobre praktyki obejmują także stosowanie narzędzi do pomiaru impedancji oraz odpowiednich technik diagnostycznych, aby wcześnie wykrywać problemy z połączeniami.

Pytanie 10

Silnik prądu stałego w układzie szeregowym dysponuje parametrami: PN = 8 kW, UN = 440 V, IN = 20 A, Rt = 0,5 ? (całkowita rezystancja twornika), RW = 0,5 ? (rezystancja wzbudzenia). Jaką wartość powinna mieć całkowita rezystancja rozrusznika, jeśli prąd rozruchowy silnika ma wynosić dwa razy więcej niż prąd znamionowy?

A. 10 ?
B. 22 ?
C. 21 ?
D. 11 ?
Aby obliczyć całkowitą wartość rezystancji rozrusznika, należy najpierw zrozumieć, że przy rozruchu silnika prąd osiąga wartość dwukrotnie wyższą niż prąd znamionowy. W tym przypadku prąd rozruchowy wynosi 2 * I_N = 2 * 20 A = 40 A. Całkowita rezystancja układu, która pozwoli na osiągnięcie tego prądu przy napięciu znamionowym, może być obliczona za pomocą prawa Ohma: R = U / I. Podstawiając dane: R = 440 V / 40 A = 11 ?. Następnie, uwzględniając rezystancje twornika (R_t = 0,5 ?) oraz rezystancję wzbudzenia (R_W = 0,5 ?), możemy obliczyć całkowitą rezystancję rozrusznika jako: R_rozrusznika = R - (R_t + R_W) = 11 ? - 1 ? = 10 ?. Takie wyliczenie jest kluczowe przy projektowaniu obwodów rozruchowych i zapewnia, że silnik będzie uruchamiany w sposób bezpieczny i efektywny. W praktyce, prawidłowe dobranie rezystancji rozrusznika może znacznie wydłużyć żywotność sprzętu oraz zminimalizować ryzyko uszkodzeń.

Pytanie 11

Przed rozpoczęciem wymiany uszkodzonych części instalacji elektrycznej do 1 kV, należy najpierw odłączyć napięcie, a następnie stosować się do zasad bezpieczeństwa w poniższej kolejności:

A. zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną, potwierdzić brak napięcia
B. potwierdzić brak napięcia, zabezpieczyć przed ponownym załączeniem, uziemić instalację elektryczną
C. zabezpieczyć przed ponownym załączeniem, potwierdzić brak napięcia, uziemić instalację elektryczną
D. potwierdzić brak napięcia, uziemić instalację elektryczną, zabezpieczyć przed ponownym załączeniem
Zrozumienie procedur bezpieczeństwa przed pracami przy instalacjach elektrycznych jest kluczowe dla uniknięcia niebezpieczeństw. W sytuacji, gdy najpierw potwierdzamy brak napięcia lub uziemiamy instalację przed zabezpieczeniem jej przed powtórnym załączeniem, narażamy się na poważne ryzyko. Potwierdzenie braku napięcia jest ważnym krokiem, ale jego wcześniejsze wykonanie bez odpowiednich zabezpieczeń może prowadzić do sytuacji, w której instalacja zostanie przypadkowo załączona podczas wykonywania prac. Z tego powodu, nie jest wystarczające jedynie potwierdzenie braku napięcia, ponieważ w tym momencie pracujący elektryk może być narażony na kontakt z energią elektryczną. Uziemienie systemu elektrycznego przed zabezpieczeniem przed załączeniem również nie jest właściwą praktyką; uziemienie powinno być ostatnim krokiem, aby zapewnić, że wszelkie ewentualne pozostałe ładunki są odprowadzone, ale nie przed podjęciem odpowiednich środków ostrożności. Kluczowe jest, aby zawsze najpierw zastosować blokady, które fizycznie uniemożliwiają włączenie zasilania, a następnie upewnić się o braku napięcia, co pozwala na bezpieczne przeprowadzenie dalszych działań. Tego rodzaju zaniedbanie w przestrzeganiu kolejności działań może prowadzić do tragicznych wypadków oraz poważnych konsekwencji zdrowotnych dla osób wykonujących prace w instalacjach elektrycznych.

Pytanie 12

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli. Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
B. pierwszy i drugi działają prawidłowo.
C. pierwszy i drugi działają nieprawidłowo.
D. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
Wyłącznik różnicowoprądowy nr 1 działa prawidłowo, co oznacza, że jego rzeczywisty prąd wyzwalający wynoszący 20 mA jest zgodny z wymaganiami. Zgodnie z normami, prąd wyzwalający powinien mieścić się w przedziale od 0,5 do 1,0 wartości znamionowej, w tym przypadku od 15 mA do 30 mA. Taki wyłącznik zapewnia odpowiednią ochronę przed porażeniem prądem elektrycznym oraz minimalizuje ryzyko uszkodzenia instalacji elektrycznej. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, szczególnie w miejscach narażonych na wilgoć. Ważne jest, aby regularnie testować ich działanie, co można zrealizować za pomocą przycisków testowych umieszczonych na obudowie urządzenia. Zgodnie z zasadami dobrej praktyki, zaleca się, aby co najmniej raz na pół roku przeprowadzać kontrolę działania wyłączników, aby upewnić się, że są w pełni sprawne i mogą skutecznie chronić użytkowników.

Pytanie 13

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Izolowanie stanowiska
B. Obwody SELV
C. Obwody PELV
D. Separacja elektryczna
Izolowanie stanowiska, mimo że jest jednym z zagadnień dotyczących bezpieczeństwa elektrycznego, nie jest właściwym środkiem ochrony w kontekście pomieszczeń mokrych, takich jak łazienki. W takich miejscach, gdzie obecność wody stwarza dodatkowe ryzyko porażenia prądem, należy stosować bardziej zaawansowane metody ochrony, takie jak obwody SELV czy PELV, które są zaprojektowane z myślą o niskim napięciu i ograniczeniu ryzyka. Izolowanie stanowiska często opiera się na założeniach dotyczących pracy w suchych środowiskach, gdzie można zmniejszyć ryzyko kontaktu z przewodzącymi elementami. Jednak w pomieszczeniach z wanną lub prysznicem, ryzyko to jest znacznie wyższe, a woda jest doskonałym przewodnikiem prądu. Ponadto, separacja elektryczna, którą proponuje się w innych odpowiedziach, również nie zawsze jest wystarczająca, jeśli nie jest odpowiednio wspierana przez inne środki bezpieczeństwa. Warto zwrócić uwagę na to, że zgodnie z normami bezpieczeństwa elektrycznego, w pomieszczeniach mokrych oraz w miejscach, gdzie występuje możliwość kontaktu z wodą, rekomendowane jest stosowanie systemów, które zapewniają optymalne warunki bezpieczeństwa, takie jak odpowiednie uziemienie czy obwody z niskim napięciem. Ignorowanie tych zasad prowadzi do niebezpieczeństw, które mogą mieć poważne konsekwencje zdrowotne.

Pytanie 14

Która z podanych okoliczności powoduje obniżenie prędkości obrotowej silnika trójfazowego z pierścieniami w trakcie jego działania?

A. Zmniejszenie obciążenia silnika
B. Zwiększenie napięcia zasilającego
C. Zwarcie pierścieni ślizgowych
D. Przerwa w zasilaniu jednej fazy
Przerwa w zasilaniu jednej fazy w trójfazowym silniku pierścieniowym powoduje, że silnik zaczyna pracować w trybie niesymetrycznym. W takim przypadku moment obrotowy generowany przez silnik ulega znacznemu osłabieniu, co prowadzi do zmniejszenia prędkości obrotowej. Silniki te są zaprojektowane do pracy z równomiernym rozkładem napięcia w wszystkich trzech fazach. Kiedy jedna z faz jest przerwana, silnik nie jest w stanie uzyskać maksymalnej mocy, co skutkuje spadkiem prędkości obrotowej. W praktyce, może to prowadzić do przegrzewania się silnika, a w skrajnych przypadkach nawet do uszkodzenia wirnika lub stojana. Z tego powodu, monitorowanie zasilania i jego stabilności jest kluczowe w zastosowaniach przemysłowych. W branżowych standardach, takich jak IEC 60034, zwraca się uwagę na konieczność stosowania urządzeń zabezpieczających przed utratą jednego z faz, aby zapewnić ciągłość pracy silników oraz minimalizować ryzyko awarii.

Pytanie 15

Jakie znaczenie ma klasa izolacji (np. kl. B) na tabliczce znamionowej silnika elektrycznego?

A. Minimalne napięcie zasilania
B. Maksymalną temperaturę pracy uzwojeń
C. Maksymalne napięcie zasilania
D. Minimalną temperaturę pracy uzwojeń
Klasa izolacji silnika elektrycznego odnosi się do maksymalnej temperatury, jaką może osiągnąć uzwojenie silnika podczas normalnej pracy, bez ryzyka uszkodzenia izolacji. Klasa B oznacza, że maksymalna temperatura pracy uzwojeń nie powinna przekraczać 130°C. Użycie silnika z odpowiednią klasą izolacji jest kluczowe w aplikacjach przemysłowych, gdzie silniki są narażone na różne warunki termiczne. Przykładowo, w przypadku silników pracujących w przemyśle metalurgicznym, gdzie temperatura otoczenia może być wysoka, klasa izolacji B zapewnia, że silnik zachowa swoje właściwości elektryczne i mechaniczne. Ważne jest, aby dobierać silniki zgodnie z wymaganiami aplikacji, a także monitorować ich temperaturę pracy, aby uniknąć przegrzania, które mogłoby prowadzić do awarii. Dobre praktyki branżowe przewidują regularne przeglądy i pomiary temperatury, co przyczynia się do wydłużenia żywotności silników oraz zwiększenia efektywności energetycznej urządzeń.

Pytanie 16

Jakie numery wskazano na schemacie z dokumentacji techniczno-ruchowej elementów zamiennych, które są częścią silnika szlifierki?

A. Od 7 do 14
B. Od 47 do 52
C. Od 19 do 26
D. Od 1 do 6
Wybór odpowiedzi związanej z innymi zakresami (np. od 47 do 52, od 1 do 6 czy od 19 do 26) świadczy o małym nieporozumieniu z identyfikacją komponentów silnika szlifierki. Te numery dotyczą różnych części, które nie są kluczowe dla samego działania silnika, co może sprawić, że serwisowanie stanie się mniej efektywne. Na przykład, numery od 1 do 6 mogą obejmować części, które tak naprawdę nie wpłyną na wydajność silnika. Jak się pomylisz z ich identyfikacją, to naprawa może się wydłużyć. Numery od 47 do 52 to z kolei mogą być jakieś osłony, które też nie są bezpośrednio związane z napędem. Takie błędy najczęściej wynikają z braku znajomości dokumentacji oraz braku zrozumienia, jak różne elementy działają razem. Dobrze jest posiedzieć nad dokumentacją i ogarnąć, jak poszczególne części wpływają na całość maszyny, bo to przekłada się na lepszą obsługę i konserwację. Im lepsza znajomość identyfikacji części, tym szybciej uda się naprawić sprzęt, a dla operatorów będzie to też bezpieczniejsze.

Pytanie 17

Jaką maksymalną wartość prądu zadziałania można ustawić na przekaźniku termobimetalowym w obwodzie zasilającym silnik asynchroniczny o parametrach UN = 400 V, PN = 0,37 kW, I = 1,05 A, n = 2710 l/min, aby zapewnić skuteczną ochronę przed przeciążeniem?

A. It=0,88 A
B. It=1,33 A
C. It=1,15 A
D. It=1,05 A
Prąd zadziałania 1,15 A na przekaźniku termobimetalowym to naprawdę dobry wybór do ochrony silnika asynchronicznego o takich danych jak U<sub>N</sub> = 400 V, P<sub>N</sub> = 0,37 kW oraz I = 1,05 A. W praktyce przekaźniki termobimetalowe ustawiamy na wartość trochę wyższą od prądu znamionowego silnika. W tym przypadku 1,15 A to dobra decyzja, bo zapewnia odpowiednią ochronę przed przeciążeniem, a jednocześnie daje trochę luzu na krótkie wzrosty prądu, które mogą wystąpić na przykład podczas rozruchu. Ta zasada jest zgodna z normą PN-EN 60204-1, która mówi o bezpieczeństwie w instalacjach elektrycznych maszyn. Dzięki temu silnik nie będzie miał problemów z uszkodzeniami spowodowanymi długotrwałym przeciążeniem, co w efekcie wydłuża jego żywotność i zwiększa niezawodność całego systemu. Na przykład, w przemyśle silnik napędzający wentylator potrzebuje odpowiednio ustawionych przekaźników, żeby wszystko działało bez zarzutu i żeby zminimalizować ryzyko awarii.

Pytanie 18

Jaka powinna być minimalna wartość natężenia prądu przy pomiarze ciągłości przewodu ochronnego?

A. 200 mA
B. 400 mA
C. 500 mA
D. 100 mA
Minimalna wartość natężenia prądu podczas wykonywania pomiaru ciągłości przewodu ochronnego wynosząca 200 mA jest określona przez normy, takie jak PN-EN 61557-4. Pomiary te mają na celu potwierdzenie, że przewody ochronne są w stanie zapewnić odpowiednią ochronę przed porażeniem elektrycznym. Wartość ta została ustalona na podstawie doświadczeń inżynieryjnych i badań, które wykazały, że natężenie prądu na poziomie 200 mA jest wystarczające do wykrycia ewentualnych wad w izolacji przewodów, a jednocześnie jest na tyle bezpieczne, aby nie stanowić zagrożenia dla osób wykonujących pomiar. W praktyce, podczas testów, jeśli wartość ta nie zostanie osiągnięta, może to sugerować problemy z przewodem ochronnym, co może prowadzić do niebezpiecznych sytuacji w instalacji elektrycznej. Regularne wykonywanie takich pomiarów jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z przepisami. Prawidłowe pomiary ciągłości przewodów ochronnych powinny być częścią regularnego serwisu i konserwacji instalacji elektrycznej, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 19

W tabeli przedstawiono parametry znamionowe silnika jednofazowego. Uruchomienie tego silnika bez kondensatora rozruchowego spowoduje

Typ silnikaSEh 80-2BF
Moc1,1 kW
Prędkość obrotowa2780 obr/min
Sprawność72%
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS1
Współczynnik mocy0,97
Pojemność kondensatora pracy25 μF
Pojemność kondensatora rozruchowego70 μF
A. zmniejszenie mocy silnika.
B. zadziałanie wyłącznika różnicowoprądowego.
C. zmniejszenie momentu rozruchowego.
D. uszkodzenie silnika.
Wybór odpowiedzi, że uruchomienie silnika jednofazowego bez kondensatora rozruchowego skutkuje zmniejszeniem mocy silnika, jest oparty na nieporozumieniu dotyczących zasad działania silników jednofazowych. Przede wszystkim, moc silnika jest zdefiniowana jako iloczyn momentu obrotowego i prędkości kątowej. Zmniejszenie mocy nie jest bezpośrednim skutkiem braku kondensatora, ale raczej niewłaściwego momentu obrotowego, który uniemożliwia start silnika. W pozostałych odpowiedziach również pojawiają się nieprawidłowe rozumowania. Na przykład, stwierdzenie, że brak kondensatora spowoduje zadziałanie wyłącznika różnicowoprądowego, jest mylne, ponieważ wyłączniki te działają w odpowiedzi na różnice prądów między przewodami, co nie ma związku z momentem rozruchowym silnika. Ostatnia odpowiedź sugerująca uszkodzenie silnika również jest nieprecyzyjna, ponieważ sam fakt braku kondensatora niekoniecznie prowadzi do uszkodzenia, lecz do niezdolności do uruchomienia. W praktyce, ważne jest zrozumienie, że silnik jednofazowy działający bez kondensatora może nie zacząć pracować, co w dłuższym okresie może prowadzić do jego uszkodzenia, ale samo w sobie nie jest to natychmiastowym skutkiem działania. Błędne odpowiedzi często wynikają z nieznajomości podstawowych zasad elektrotechniki oraz mechaniki ruchu obrotowego, dlatego kluczowe jest zapoznanie się z literaturą fachową oraz standardami, które dokładnie opisują zasady działania silników elektrycznych.

Pytanie 20

Który z poniższych przypadków prowadzi do nadmiernego iskrzenia na komutatorze w silniku szeregowym?

A. Zbyt wysokie obroty wirnika
B. Przegrzanie uzwojeń stojana
C. Zwarcie pomiędzy zwojami wirnika
D. Przegrzanie uzwojeń wirnika
Zwarcie pomiędzy zwojami wirnika to sytuacja, w której dochodzi do niezamierzonego połączenia elektrycznego między różnymi zwojami w obrębie uzwojenia wirnika. Tego rodzaju uszkodzenie powoduje, że prąd elektryczny nie przepływa w sposób przewidziany przez projekt, co prowadzi do zwiększenia wartości prądów roboczych. W wyniku tego zjawiska na komutatorze silnika szeregowym pojawia się nadmierne iskrzenie, ponieważ prąd nie jest równomiernie rozłożony po wszystkich zwojach wirnika. Iskrzenie na komutatorze nie tylko powoduje zużycie materiału, ale także prowadzi do dodatkowych strat energii, co z kolei obniża efektywność silnika. W praktyce, aby zminimalizować ryzyko zwarcia, stosuje się różne metody, takie jak odpowiednie dobieranie izolacji uzwojeń, regularne przeglądy stanu technicznego oraz testowanie wytrzymałości izolacji. Dbanie o te aspekty jest zgodne z normami branżowymi, takimi jak IEC 60034, które dotyczą silników elektrycznych.

Pytanie 21

W instalacji trójfazowej działającej w układzie TN-C, gdy na odbiornikach wystąpi napięcie fazowe przekraczające 300 V, co może być tego przyczyną?

A. przerwą w jednej z faz
B. zwarciem między fazą a przewodem PEN
C. przerwaniem ciągłości przewodu PEN
D. zwarciem pomiędzy fazami
Zwarcie fazy z przewodem PEN prowadziłoby do nieprawidłowego rozkładu napięć, jednak nie jest to główny powód wzrostu napięcia powyżej 300 V na odbiornikach. W sytuacji zwarcia fazowego, napięcia na pozostałych fazach mogą spadać, ponieważ dochodzi do podziału prądów i obciążenia. Zwarcie międzyfazowe także wprowadza nieprawidłowości w dostawie energii, lecz skutkiem jest zazwyczaj wyzwolenie zabezpieczeń, co chroni urządzenia przed nadmiernym napięciem. Natomiast przerwa w jednej z faz skutkuje z kolei nierównomiernym rozkładem obciążenia w systemie trójfazowym, co może prowadzić do problemów z równowagą obciążenia, ale rzadko skutkuje wzrostem napięcia na odbiornikach do wartości niebezpiecznych. W przypadku układu TN-C kluczowe znaczenie ma ciągłość przewodu PEN, który jest odpowiedzialny za ochronę przed porażeniem. Brak tego przewodu może spowodować, że napięcie na odbiornikach będzie w sposób niekontrolowany rosło, co zagraża bezpieczeństwu użytkowników oraz urządzeń. Dlatego uznanie przerwania ciągłości przewodu PEN za główną przyczynę wzrostów napięcia w tym układzie jest kluczowe dla prawidłowego zrozumienia funkcjonowania instalacji elektrycznych oraz ich bezpieczeństwa.

Pytanie 22

Kontrole okresowe instalacji elektrycznych niskiego napięcia powinny być realizowane co najmniej raz na

A. 5 lat
B. 3 lata
C. 4 lata
D. 1 rok
Zgodnie z obowiązującymi normami oraz przepisami prawa, badania okresowe instalacji elektrycznej niskiego napięcia powinny być przeprowadzane nie rzadziej niż co 5 lat. Takie podejście ma na celu zapewnienie bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji. W Polsce regulacje te są zawarte w normie PN-IEC 60364-6 oraz w Rozporządzeniu Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. Przeprowadzanie badań co 5 lat pozwala na wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych awarii lub zagrożeń pożarowych. W praktyce, jeśli instalacja jest intensywnie eksploatowana, zaleca się częstsze kontrole, na przykład co 3 lata, ale minimum to właśnie 5 lat. Regularne audyty instalacji mogą obejmować testy wytrzymałości izolacji, pomiary rezystancji uziemienia czy sprawdzanie zabezpieczeń, co jest kluczowe dla ochrony ludzi i mienia.

Pytanie 23

Do wykonania WLZ w instalacji trójfazowej jak na rysunku należy zastosować przewód typu

Ilustracja do pytania
A. LgY
B. YDY
C. UTP
D. YKY
Przewód typu YKY jest najlepszym wyborem do wykonania wewnętrznej linii zasilającej (WLZ) w instalacji trójfazowej. Jego konstrukcja, oparta na miedzi i izolacji PVC, zapewnia odporność na różne warunki atmosferyczne oraz mechaniczne uszkodzenia, co jest kluczowe w instalacjach zarówno wewnętrznych, jak i zewnętrznych. W praktyce, YKY jest często stosowany w instalacjach przemysłowych oraz w budynkach mieszkalnych, gdzie wymagana jest stabilna i bezpieczna dostawa energii elektrycznej. Użycie przewodu YKY pozwala na zachowanie wysokiej wydajności energetycznej oraz minimalizację strat energii. Dodatkowo, zgodność z normami PN-EN 60228 oraz PN-EN 50525 potwierdza jego zastosowanie w instalacjach trójfazowych. Wybór YKY zamiast YDY jest uzasadniony tym, że YDY, mimo że również wykonany z miedzi, ma mniejszą odporność na czynniki zewnętrzne, co może prowadzić do uszkodzeń w trudniejszych warunkach. Właściwy dobór przewodu jest kluczowy dla zapewnienia bezpieczeństwa oraz efektywności instalacji elektrycznej.

Pytanie 24

W przypadku gdy instrukcje stanowiskowe nie określają szczegółowych terminów, przegląd urządzeń napędowych powinien być przeprowadzany przynajmniej raz na

A. dwa lata
B. pięć lat
C. cztery lata
D. rok
Odpowiedź 'dwa lata' jest zgodna z ogólnymi zaleceniami dotyczącymi przeglądów urządzeń napędowych, które określają, że w przypadku braku specyficznych instrukcji, minimalny okres między przeglądami powinien wynosić dwa lata. Cykliczne przeglądy są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności operacyjnej urządzeń. W praktyce, regularne inspekcje pozwalają na wczesne wykrywanie potencjalnych usterek, co zapobiega kosztownym awariom oraz wydłuża żywotność sprzętu. Na przykład, w przemyśle energetycznym, zgodnie z normami ISO 9001 i ISO 55001, regularne przeglądy są niezbędne do utrzymania systemów w optymalnym stanie operacyjnym. Przeglądy powinny obejmować analizę stanu technicznego komponentów, ich efektywności oraz zgodności z obowiązującymi normami. Dodatkowo, dokumentacja przeglądów jest ważnym elementem zarządzania majątkiem, który pozwala na prowadzenie odpowiednich analiz oraz podejmowanie decyzji inwestycyjnych w przyszłości.

Pytanie 25

Jakie jest minimalne zabezpieczenie, jakie powinien posiadać osprzęt instalacyjny przeznaczony do montażu instalacji elektrycznej w pomieszczeniach charakteryzujących się częstym występowaniem podwyższonej wilgotności oraz pylenia?

A. IP 66
B. IP 22
C. IP 00
D. IP 44
Wybór IP 22 jest kiepskim pomysłem. Oznacza to, że osprzęt ma tylko częściową ochronę przed ciałami stałymi większymi niż 12,5 mm i w ogóle nie broni przed wodą. To za mało na łazienki czy kuchnie, gdzie wilgoć jest na porządku dziennym. Tam ważne, by sprzęt był chroniony przed wodą i zanieczyszczeniami, dlatego IP 44 to minimum, które powinno się wybrać. A IP 00? To już totalna porażka, bo w elektryce oznacza brak ochrony, co stwarza zagrożenie zarówno dla sprzętu, jak i ludzi. Z kolei IP 66, mimo że teoretycznie świetnie chroni przed wodą i pyłem, to w domowych warunkach może być zbyteczne i nieopłacalne. Ważne jest, by dobierać stopnie ochrony do konkretnego miejsca i warunków użytkowania. Wiedza na ten temat umożliwia podejmowanie lepszych decyzji co do osprzętu, co jest kluczowe dla bezpieczeństwa i efektywności instalacji elektrycznych.

Pytanie 26

Wskaźnikuj najprawdopodobniejszą przyczynę nietypowego brzęczenia wydobywającego się z kadzi działającego transformatora energetycznego?

A. Niesymetryczność obciążenia
B. Nieszczelność kadzi transformatora
C. Praca na biegu jałowym
D. Drgania skrajnych blach rdzenia
Te drgania blach w rdzeniu transformatora to chyba główny powód, dla którego słychać to nienormalne brzęczenie, gdy on pracuje. Rdzeń składa się z cienkich blach, które są połączone, żeby zminimalizować straty energii i zjawisko histerezy. Kiedy transformator działa, zmieniające się pole magnetyczne może powodować drgania tych blach. Jak blachy nie są odpowiednio spasowane albo mają jakieś wady produkcyjne, to mogą zacząć rezonować, co prowadzi do tych nieprzyjemnych dźwięków. Moim zdaniem, żeby ograniczyć te drgania, warto regularnie konserwować transformatory i sprawdzać jakość tych blach, zwłaszcza według norm IEC 60076. Dobrze wykonany rdzeń i jego fachowy montaż mogą naprawdę wpłynąć na to, jak cicho i efektywnie pracuje transformator, co ma spore znaczenie w systemach energetycznych, gdzie hałas może być problematyczny.

Pytanie 27

Który z wymienionych zestawów narzędzi jest niezbędny do wymiany łożysk silnika przedstawionego na rysunku?

Ilustracja do pytania
A. Komplet kluczy, komplet wkrętaków płaskich, szczypce boczne, ściągacz łożysk, młotek.
B. Komplet kluczy, komplet wkrętaków, ściągacz łożysk, tuleja do łożysk, młotek.
C. Klucz francuski nastawny, komplet wkrętaków, młotek gumowy, nóż monterski.
D. Komplet wkrętaków, młotek, przecinak, tuleja do łożysk.
Wybór zestawu narzędzi numer 4 jest trafny, ponieważ zawiera wszystkie niezbędne elementy do wymiany łożysk w silniku elektrycznym. Komplet kluczy i wkrętaków pozwala na rozkręcenie obudowy silnika, co jest kluczowe dla dostępu do łożysk. Ściągacz łożysk jest istotnym narzędziem, które umożliwia bezpieczne i efektywne usunięcie łożysk, minimalizując ryzyko uszkodzenia komponentów silnika. Tuleja do łożysk oraz młotek są konieczne do właściwego montażu nowych łożysk, co zapewnia ich długotrwałe i bezawaryjne działanie. Wymiana łożysk powinna być przeprowadzana zgodnie z zaleceniami producenta oraz branżowymi standardami, aby zapewnić maksymalną wydajność i bezpieczeństwo urządzenia. Znajomość odpowiednich narzędzi i technik jest kluczowa w pracy technika, co podkreśla znaczenie poprawnego doboru zestawu narzędzi do konkretnej operacji serwisowej.

Pytanie 28

Do wykonania pomiarów impedancji pętli zwarciowej metodą spadku napięcia, zgodnie ze schematem przedstawionym na rysunku, wykorzystano impedancję Z = 50 Ω i otrzymano wyniki:
-wyłącznik otwarty, U1 = 230 V
-wyłącznik zamknięty, U2 = 200 V, I = 4,0 A
Impedancja badanej pętli zwarciowej wynosi

Ilustracja do pytania
A. 7,5 Ω
B. 42,3 Ω
C. 3,7 Ω
D. 57,5 Ω
Aby obliczyć impedancję pętli zwarciowej, wykorzystujemy różnicę napięć zmierzoną przy otwartym i zamkniętym wyłączniku oraz prąd płynący w obwodzie. W danych przedstawionych w pytaniu mamy U1 = 230 V (wyłącznik otwarty) i U2 = 200 V (wyłącznik zamknięty). Spadek napięcia wynosi więc U1 - U2 = 230 V - 200 V = 30 V. Następnie, korzystając z prawa Ohma, możemy obliczyć impedancję pętli zwarciowej, stosując wzór Z = U/I, gdzie I to prąd przy zamkniętym wyłączniku, który wynosi 4,0 A. Podstawiając wartości, mamy Z = 30 V / 4,0 A = 7,5 Ω. Impedancja ta jest istotnym parametrem w projektowaniu i ocenie instalacji elektrycznych, gdyż pozwala na ocenę bezpieczeństwa systemu i odpowiednich działań w przypadku zwarcia. W praktyce, podczas pomiarów, warto również zwrócić uwagę na to, aby impedancja pętli zwarciowej była na poziomie zgodnym z normami, co może przyczynić się do poprawy ochrony przed porażeniem elektrycznym oraz zapewnienia efektywności działania zabezpieczeń.

Pytanie 29

Kto jest zobowiązany do utrzymania odpowiedniego stanu technicznego układów pomiarowych i rozliczeniowych energii elektrycznej w biurowcu?

A. Dostawca energii elektrycznej
B. Właściciel obiektu
C. Zarządca obiektu
D. Producent energii elektrycznej
Właściciel budynku, jako podmiot odpowiedzialny za jego zarządzanie, może być mylnie postrzegany jako ten, kto odpowiada za stan techniczny układów pomiarowo-rozliczeniowych. Jednakże, w kontekście przepisów prawa i praktyk branżowych, jego rola ogranicza się głównie do zapewnienia odpowiednich warunków do instalacji i użytkowania tych urządzeń. Właściciel budynku nie ma kompetencji ani zasobów technicznych, aby samodzielnie sprawować nadzór nad układami pomiarowymi, co może prowadzić do nieporozumień co do odpowiedzialności. Z kolei wytwórca energii elektrycznej odpowiada za produkcję energii, ale nie zajmuje się bezpośrednio pomiarami i rozliczeniami dla odbiorców. Tylko dostawca energii, który finalnie sprzedaje energię, ma obowiązek monitorować stan techniczny urządzeń pomiarowych, aby zapewnić ich prawidłowe działanie. Zarządca budynku, mimo że może mieć pewne obowiązki w zakresie zarządzania infrastrukturą, nie jest w stanie zapewnić technicznej niezawodności układów pomiarowych bez ścisłej współpracy z dostawcą energii. Dobre praktyki branżowe oraz regulacje prawne jasno określają, że to dostawca energii jest odpowiedzialny za prawidłowe funkcjonowanie systemów pomiarowych, co jest kluczowe dla dokładnych rozliczeń i zapobiegania sporom między klientami a dostawcami.

Pytanie 30

Który z podanych materiałów przewodzących jest najczęściej stosowany w instalacjach elektrycznych ze względu na swoje właściwości?

A. Stal
B. Aluminium
C. Miedź
D. Nikiel
Aluminium jest często używane jako alternatywa dla miedzi w niektórych zastosowaniach, zwłaszcza tam, gdzie masa jest kluczowym czynnikiem. Jego przewodność elektryczna jest dobra, ale nie tak wysoka jak miedzi. Ponadto, aluminium jest bardziej podatne na utlenianie, co może prowadzić do problemów z korozją i wymaga dodatkowych środków ochronnych, takich jak stosowanie past antykorozyjnych. To sprawia, że w wielu przypadkach miedź jest preferowana ze względu na większą niezawodność i trwałość. Stal, mimo że jest materiałem przewodzącym, nie jest powszechnie stosowana jako materiał na przewody w instalacjach elektrycznych. Jej przewodność elektryczna jest znacznie niższa niż miedzi i aluminium, co czyni ją nieefektywną w przesyle energii. Używa się jej głównie tam, gdzie wymagana jest duża wytrzymałość mechaniczna, ale nie jako główny materiał przewodzący. Nikiel, z kolei, jest używany głównie jako powłoka ochronna dla innych metali, aby zwiększyć ich odporność na korozję i poprawić wygląd. Jego przewodność elektryczna jest relatywnie niska, co czyni go niepraktycznym jako główny materiał przewodzący w instalacjach elektrycznych. Wybór niklu zamiast miedzi czy aluminium byłby nie tylko nieefektywny, ale także kosztowny. Zatem, mimo że każdy z tych materiałów ma swoje zastosowania w elektrotechnice, to jednak miedź jest najbardziej efektywna i wszechstronna w kontekście przewodzenia prądu w instalacjach elektrycznych.

Pytanie 31

Jaką liczbę należy zastosować do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dozwoloną wartość nastawy prądu na jego zabezpieczeniu przeciążeniowym?

A. 2,0
B. 1,1
C. 1,2
D. 0,9
Poprawna odpowiedź to 1,1, co oznacza, że wartość znamionowego prądu silnika trójfazowego klatkowego należy pomnożyć przez ten współczynnik, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na zabezpieczeniu przeciążeniowym. Zastosowanie współczynnika 1,1 wynika z faktu, że silniki elektryczne, w tym silniki klatkowe, mogą mieć chwilowe przeciążenia, które są normalne w czasie rozruchu lub przy zmiennych warunkach pracy. Przyjęcie wartości 1,1 jako mnożnika do prądu znamionowego uwzględnia te momenty, co jest zgodne z praktykami opisanymi w normach IEC 60947-4-1 dotyczących wyłączników silnikowych. Przykładowo, jeśli znamionowy prąd silnika wynosi 10 A, to maksymalna dopuszczalna wartość nastawy na zabezpieczeniu przeciążeniowym wynosi 11 A. Takie ustawienie zabezpieczenia pozwala na bezpieczne działanie silnika, jednocześnie chroniąc go przed uszkodzeniem w wyniku przeciążenia.

Pytanie 32

Czym charakteryzują się urządzenia oznaczone znakiem pokazanym na rysunku?

Ilustracja do pytania
A. Muszą być umieszczane poza zasięgiem ręki.
B. Mają podwójną lub wzmocnioną izolację.
C. Wymagają ogrodzeń, jako ochrony przeciwporażeniowej.
D. Muszą być zasilane bardzo niskim napięciem bezpiecznym.
Odpowiedź, że "Mają być zasilane bardzo niskim napięciem bezpiecznym" jest jak najbardziej trafna. Urządzenia z symbolem klasy III, który widnieje na rysunku, powinny być zasilane niskim napięciem, nieprzekraczającym 50V w prądzie przemiennym i 120V w prądzie stałym. Nazywamy to SELV, czyli ewentualnie niskim napięciem bezpiecznym. Dzięki temu ryzyko porażenia prądem jest znacznie mniejsze. W praktyce znajdziemy takie urządzenia wszędzie tam, gdzie ludzie często mają z nimi do czynienia, jak na przykład w sprzęcie medycznym czy lampach. Kluczowe jest, żeby przy projektowaniu instalacji elektrycznych z użyciem tych urządzeń przestrzegać norm bezpieczeństwa, jak PN-EN 61140. Co więcej, fakt, że nie trzeba ich uziemiać, bardzo ułatwia ich montaż i sprawia, że są super uniwersalne w różnych zastosowaniach przemysłowych i komercyjnych.

Pytanie 33

Aby zapewnić ochronę przeciwporażeniową uzupełniającą do podstawowej, obwody zasilające gniazda wtyczkowe z prądem do 32 A powinny być chronione wyłącznikiem RCD o znamionowym prądzie różnicowym

A. 30 mA
B. 1 000 mA
C. 500 mA
D. 100 mA
Wybór wyłącznika różnicowoprądowego (RCD) o znamionowym prądzie różnicowym 30 mA jest zgodny z aktualnymi normami bezpieczeństwa, takimi jak PN-EN 61008, które rekomendują jego zastosowanie w instalacjach zasilających obwody gniazd wtyczkowych, szczególnie w przypadku narażenia na porażenie prądem. Wyłącznik RCD 30 mA skutecznie minimalizuje ryzyko porażenia prądem przez szybkie odłączenie zasilania w przypadku wykrycia różnicy prądów, co jest istotne w obwodach o napięciu 230 V, gdzie ochrona osób jest priorytetem. Przykładem zastosowania wyłączników o tym znamionowym prądzie różnicowym jest instalacja w pomieszczeniach, gdzie wykorzystuje się urządzenia elektryczne w pobliżu wody, takie jak kuchnie czy łazienki. W takich miejscach, zgodnie z normami, zastosowanie RCD 30 mA jest koniecznością, co znacząco zwiększa bezpieczeństwo użytkowników i ogranicza ryzyko wypadków. Regularna kontrola i testowanie RCD zapewnia jego prawidłowe działanie oraz podnosi świadomość użytkowników na temat znaczenia ochrony przeciwporażeniowej w instalacjach elektrycznych.

Pytanie 34

W przypadku pomiarów rezystancji izolacyjnej w całej instalacji elektrycznej budynku, który jest zasilany napięciem 230/400 V, powinno się je przeprowadzać przy odłączonym zasilaniu i przy

A. otwartych łącznikach i odłączonych odbiornikach
B. otwartych łącznikach i załączonych odbiornikach
C. zamkniętych łącznikach i załączonych odbiornikach
D. zamkniętych łącznikach i odłączonych odbiornikach
Pomiar rezystancji izolacji w instalacji elektrycznej jest kluczowy dla zapewnienia bezpieczeństwa i funkcjonalności systemu. Wykonywanie tych pomiarów przy zamkniętych łącznikach oraz odłączonych odbiornikach minimalizuje ryzyko uszkodzeń sprzętu oraz zapewnia dokładność pomiaru. W takim ustawieniu można skutecznie ocenić stan izolacji przewodów, co jest zgodne z normami europejskimi, takimi jak PN-EN 61010, które wymagają, aby urządzenia pomiarowe były używane w odpowiednich warunkach. Odpowiednia izolacja przewodów jest niezbędna do zapobiegania zwarciom oraz wyciekowi prądu do ziemi, co mogłoby prowadzić do niebezpiecznych sytuacji, takich jak pożary czy porażenia prądem. Przykładowo, podczas inspekcji budynku, technik powinien najpierw upewnić się, że wszystkie urządzenia są wyłączone, a następnie przeprowadzić pomiar rezystancji izolacji. Taki proces jest standardową procedurą w przemyśle elektrycznym i jest zalecany przez wiele organizacji zajmujących się normami bezpieczeństwa.

Pytanie 35

Jakie z poniższych warunków powinno być spełnione w instalacji mieszkalnej, aby zagwarantować minimalną ochronę przed porażeniem prądem elektrycznym?

A. Zrealizowanie instalacji elektrycznej przy użyciu przewodu o żyłach w formie linki
B. Montowanie w instalacji wyłącznika różnicowoprądowego
C. Wykorzystanie przewodów roboczych o właściwej wartości rezystancji izolacji
D. Podłączenie styków ochronnych gniazd do przewodu ochronnego systemu
Zastosowanie przewodów roboczych o odpowiedniej wartości rezystancji izolacji jest kluczowe dla zapewnienia bezpieczeństwa w instalacji elektrycznej. Wysoka rezystancja izolacji minimalizuje ryzyko porażenia prądem elektrycznym, ponieważ ogranicza przepływ prądu w przypadku uszkodzenia izolacji przewodów. Zgodnie z normami, takimi jak PN-IEC 60364, wartość rezystancji izolacji powinna być odpowiednio wysoka, aby zapewnić skuteczną ochronę przed awariami. W praktyce, regularne pomiary rezystancji izolacji powinny być wykonywane przez wykwalifikowanych elektryków, co pozwala na wczesne wykrywanie potencjalnych zagrożeń. Dodatkowo, stosowanie przewodów o dobrej izolacji jest istotne w kontekście długowieczności instalacji – przewody o niskiej rezystancji izolacji mogą prowadzić do ich szybszego zużycia oraz zwiększenia ryzyka awarii. Właściwe dobranie materiałów oraz regularne przeglądy techniczne są fundamentem zapewnienia bezpieczeństwa użytkowania instalacji elektrycznej.

Pytanie 36

Silnik obcowzbudny prądu stałego, którego schemat układu połączeń zamieszczono na rysunku, pracuje w warunkach znamionowego zasilania i obciążenia. Po zwiększeniu rezystancji regulatora w obwodzie twornika nastąpi

Ilustracja do pytania
A. zmniejszenie prędkości obrotowej i zmniejszenie prądu wzbudzenia.
B. zwiększenie prędkości obrotowej i zwiększenie prądu pobieranego z sieci.
C. zmniejszenie prędkości obrotowej i zmniejszenie sprawności silnika.
D. zwiększenie prędkości obrotowej i zwiększenie strat w obwodzie twornika.
W kontekście silników obcowzbudnych prądu stałego, każdy błąd w rozumieniu wpływu rezystancji w obwodzie twornika może prowadzić do mylnych wniosków. Zwiększenie rezystancji w obwodzie twornika nie prowadzi do zwiększenia prędkości obrotowej silnika ani do zwiększenia strat w obwodzie twornika, jak sugeruje jedna z odpowiedzi. W rzeczywistości, zwiększenie rezystancji skutkuje spadkiem prędkości obrotowej, co jest konsekwencją obniżenia napięcia na tworniku. Ponadto, zmniejszenie prędkości obrotowej nie wiąże się z redukcją prądu wzbudzenia, ponieważ prąd wzbudzenia zależy od układu wzbudzenia, a nie bezpośrednio od rezystancji w obwodzie twornika. Pomieszanie tych pojęć często wynika z braku zrozumienia podstawowych zasad działania silników prądu stałego. W przypadku zwiększenia rezystancji, użytkownicy mogą błędnie zakładać, że więcej energii będzie dostarczane do silnika, co jest niezgodne z rzeczywistością. Dobrze jest rozumieć, że sprawność silnika ogranicza się poprzez wzrost strat energii, co jest kluczowe dla jego optymalizacji w zastosowaniach przemysłowych. Dążenie do efektywności energetycznej wymaga zrozumienia dynamiki obwodów elektrycznych, co jest niezbędne w nowoczesnym inżynierii elektronicznej.

Pytanie 37

Kto jest uprawniony do przeprowadzenia konserwacji silnika tokarki TUE-35 w zakładzie elektromechanicznym?

A. Operator tej maszyny
B. Kierownik grupy mechaników
C. Osoba, która posiada odpowiednie przeszkolenie i uprawnienia
D. Każdy pracownik na pisemne zlecenie pracodawcy
Odpowiedź, że konserwację silnika tokarki TUE-35 może przeprowadzić osoba przeszkolona i uprawniona, jest prawidłowa ze względu na konieczność przestrzegania standardów bezpieczeństwa oraz eksploatacji maszyn. W branży mechanicznej i elektromechanicznej, konserwacja urządzeń mechanicznych, takich jak tokarki, wymaga specjalistycznej wiedzy oraz umiejętności, które zdobywa się podczas szkoleń. Tylko wykwalifikowany personel ma odpowiednie kompetencje do zdiagnozowania potencjalnych problemów, dokonywania niezbędnych napraw oraz przeprowadzania regularnych przeglądów technicznych, co zapobiega dalszym uszkodzeniom maszyny. Przykładem może być sytuacja, w której nieprzeszkolona osoba próbuje wymienić uszczelnienia w silniku, co może prowadzić do jego awarii lub nawet zagrożenia dla zdrowia pracowników. Warto zauważyć, że w wielu zakładach przemysłowych obowiązują określone normy, takie jak ISO 9001, które wymagają, aby wszystkie prace konserwacyjne były przeprowadzane przez wykwalifikowany personel, co podkreśla znaczenie odpowiednich uprawnień.

Pytanie 38

W układzie, którego schemat zamieszczono na rysunku, sprawdzono cztery różne urządzenia ochronne różnicowoprądowe. Wyniki wskazań amperomierza (IA) w momencie zadziałania urządzenia zestawiono w tabeli. Które urządzenie ochronne jest sprawne?

Urządzenie
ochronne
różnicowoprądowe
Prąd
znamionowy IΔN
Prąd IA
A.10 mA0,02 A
B.30 mA0,04 A
C.100 mA0,15 A
D.300 mA0,24 A
Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Urządzenie ochronne różnicowoprądowe D zostało uznane za sprawne, ponieważ jego prąd zadziałania wynosi 0,24 A (240 mA), co mieści się w określonym zakresie od 0,5 IΔn do IΔn, gdzie IΔn dla tego urządzenia wynosi 300 mA. Oznacza to, że urządzenie zadziała w odpowiednim momencie, skutecznie chroniąc instalację elektryczną oraz osoby przed skutkami porażenia prądem. W branży elektroenergetycznej zasady działania urządzeń różnicowoprądowych są ściśle regulowane przez normy, takie jak PN-EN 61008-1. Te urządzenia są kluczowe w zapewnieniu bezpieczeństwa, zwłaszcza w obiektach, gdzie występuje ryzyko kontaktu z wodą lub innymi przewodnikami prądu. Właściwy dobór urządzenia ochronnego i jego parametry są fundamentalne dla efektywności ochrony. Przykładem zastosowania może być instalacja w łazience, gdzie obecność wody zwiększa ryzyko porażenia prądem, a zastosowanie różnicowoprądowego urządzenia ochronnego o odpowiednich parametrach jest koniecznością. To pokazuje, jak ważne jest nie tylko zrozumienie działania tych urządzeń, ale również ich praktyczne zastosowanie w codziennym życiu.

Pytanie 39

Gdzie w instalacji jednofazowej należy umieścić wyłącznik RCD?

A. w przewodzie neutralnym i ochronnym
B. w przewodzie fazowym i ochronnym
C. w przewodzie fazowym i neutralnym
D. w przewodzie fazowym i fazowym
Wyłącznik RCD (Residual Current Device) jest istotnym urządzeniem w systemach elektrycznych, służącym do ochrony przed porażeniem prądem elektrycznym oraz do zapobiegania pożarom spowodowanym upływem prądu. Montuje się go w przewodach fazowym i neutralnym, ponieważ jego głównym zadaniem jest monitorowanie różnicy prądów między tymi dwoma przewodami. W przypadku, gdy wystąpi różnica prądu, na przykład w wyniku uszkodzenia izolacji, urządzenie natychmiast odłącza zasilanie. Dzięki temu, gdy prąd wypływa do ziemi, wyłącznik RCD minimalizuje ryzyko porażenia prądem oraz potencjalnych zagrożeń pożarowych. Przykładem zastosowania wyłącznika RCD są instalacje elektryczne w domach jednorodzinnych oraz w miejscach użyteczności publicznej, gdzie zwiększone ryzyko kontaktu z wodą wymaga dodatkowych zabezpieczeń. W Polsce, zgodnie z normą PN-EN 61008-1, stosowanie RCD w instalacjach elektrycznych jest zalecane jako standardowa praktyka w celu zwiększenia bezpieczeństwa użytkowników.

Pytanie 40

Aby naprawić uszkodzenie przerwanego przewodu pomiędzy sąsiednimi puszkami łączeniowymi w instalacji elektrycznej podtynkowej, która znajduje się w rurce, konieczne jest

A. pozostawić uszkodzony przewód, a puszki połączyć przewodem natynkowym
B. odkręcić w puszkach uszkodzony przewód, zlutować, zaizolować i połączyć
C. wykuć bruzdę i wymienić rurkę instalacyjną z przewodami na przewód podtynkowy
D. odkręcić w puszkach uszkodzony przewód, wymienić go na nowy i połączyć
Odpowiedź polegająca na odkręceniu przerwanego przewodu w puszkach i zastąpieniu go nowym jest prawidłowa, ponieważ zapewnia trwałe i bezpieczne rozwiązanie problemu uszkodzonej instalacji elektrycznej. Zgodnie z zasadami dobrej praktyki, usunięcie uszkodzonego przewodu i zastąpienie go nowym jest kluczowe dla zapewnienia ciągłości obwodu oraz minimalizacji ryzyka wystąpienia zwarcia czy pożaru. W przypadku przerwania przewodu, jego naprawa poprzez zlutowanie może być nietrwała i narażać na ryzyko, zwłaszcza w instalacjach podtynkowych, gdzie dostęp do uszkodzeń jest ograniczony. Wymiana przewodu jest standardem w branży i pozwala na zachowanie pełnej funkcjonalności instalacji. Dodatkowo, przy wykonywaniu takiej naprawy należy stosować odpowiednie materiały, które przeznaczone są do instalacji elektrycznych, a także przestrzegać norm PN-IEC 60364, które regulują zasady bezpieczeństwa w instalacjach elektrycznych. Przykładowo, przy wyborze nowego przewodu warto kierować się jego parametrami elektrycznymi oraz odpowiednią izolacją, co zwiększy efektywność i bezpieczeństwo całej instalacji.