Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 12:26
  • Data zakończenia: 7 grudnia 2025 12:32

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Stosując kryterium obciążalności prądowej, dobierz przewód kabelkowy o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej w układzie TN-S, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B16.

Przekrój przewodu mm²Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu AŻyła Al AŻyła Cu AŻyła Al AŻyła Cu AŻyła Al A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
6332644355442
A. YDY 5x2,5 mm2
B. YDY 5x1 mm2
C. YADY 5x4 mm2
D. YDY 5x1,5 mm2
Wybór innych przewodów, takich jak YDY 5x1 mm2, YADY 5x4 mm2 czy YDY 5x2,5 mm2, nie spełnia wymagań technicznych związanych z obciążalnością prądową w danej instalacji. Przewód YDY 5x1 mm2 ma zbyt mały przekrój, co uniemożliwia mu bezpieczne przewodzenie prądu o natężeniu 16A, a jego obciążalność długotrwała jest zdecydowanie poniżej wymaganego poziomu. Zastosowanie przewodu o zbyt małym przekroju może prowadzić do przegrzewania, uszkodzenia izolacji, a w konsekwencji do ryzyka pożaru. Natomiast YADY 5x4 mm2, mimo że ma większy przekrój, nie jest odpowiedni w tej konkretnej instalacji, ponieważ nie jest konieczne stosowanie tak dużego przewodu dla obciążenia 16A, co zwiększa koszty materiałów. Z kolei YDY 5x2,5 mm2, choć ma większy przekrój niż wymagany, również nie jest optymalnym rozwiązaniem w tej sytuacji, ponieważ może prowadzić do nieefektywnego wykorzystania zasobów oraz niepotrzebnego zwiększenia kosztów instalacji. Kluczowe w doborze przewodów jest przestrzeganie standardów branżowych oraz obliczeń dotyczących rzeczywistego obciążenia, co zapewnia bezpieczeństwo oraz efektywność energetyczną instalacji. Należy pamiętać, że odpowiednie podejście do projektowania instalacji elektrycznych nie tylko zabezpiecza przed awariami, ale także spełnia normy i przepisy prawne, co jest niezbędne w każdym projekcie budowlanym.

Pytanie 2

Który typ źródła światła przedstawiono na rysunku?

Ilustracja do pytania
A. Halogenowe.
B. Wolframowe.
C. Rtęciowe.
D. Diodowe.
Wybór jednego z pozostałych typów źródła światła, takich jak wolframowe, rtęciowe czy halogenowe, jest wynikiem nieporozumienia dotyczącego charakterystyki i konstrukcji żarówek. Źródła wolframowe, na przykład, działają na zasadzie podgrzewania włókna wolframowego, co prowadzi do emisji światła, ale ich efektywność energetyczna jest znacznie niższa niż w przypadku diod LED. Oprócz tego, żarówki te mają krótszą żywotność, wynoszącą średnio tylko około 1 000 godzin. Odpowiedzi oparte na żarówkach rtęciowych również są mylne, ponieważ choć te źródła światła charakteryzują się wysoką sprawnością, ich użycie jest ograniczone ze względu na obecność szkodliwej rtęci, co stawia je w niekorzystnej pozycji w kontekście ochrony środowiska. Wreszcie, żarówki halogenowe, będące wariantem żarówek wolframowych, oferują lepszą wydajność, ale wciąż nie dorównują LED-om pod względem efektywności i trwałości. Często myślenie o tych tradycyjnych źródłach światła jako bardziej znajomych i sprawdzonych powoduje, że użytkownicy mogą nie dostrzegać korzyści płynących z nowoczesnych rozwiązań, jakimi są diody LED. Zrozumienie różnic między tymi technologiami jest kluczowe dla dokonania świadomego wyboru, który nie tylko wpłynie na oszczędności, ale także na jakość oświetlenia w codziennym życiu.

Pytanie 3

W układzie przedstawionym na rysunku zmierzono rezystancję pomiędzy poszczególnymi żyłami kabla, otrzymując następujące wyniki: RA-B = 0; RB-C = ∞; RC-D = ∞; RD-A= 0. Z wyników pomiarów wynika, że przerwana jest

Ilustracja do pytania
A. żyła D
B. żyła B
C. żyła C
D. żyła A
Odpowiedź dotycząca żyły C jako przerwanej jest prawidłowa z powodu wyników pomiarów rezystancji, które wskazują na istotną przerwę w obwodzie. Rezystancje R_A-B i R_D-A wynoszą 0, co oznacza, że obydwie żyły są w pełni przewodzące, co jest zgodne z teorią obwodów elektrycznych. Z kolei nieskończona rezystancja pomiędzy żyłami B-C i C-D sugeruje, że prąd nie ma możliwości przemieszczenia się przez te żyły, co jest klasycznym objawem uszkodzenia. W praktyce, identyfikacja przerwy w obwodzie jest kluczowa dla diagnostyki systemów elektrycznych, zwłaszcza w instalacjach przemysłowych. Przykład zastosowania tej wiedzy można znaleźć w systemach monitorujących, które regularnie sprawdzają integralność obwodów, co przyczynia się do minimalizacji ryzyka awarii. W kontekście norm, stosuje się procedury testowania rezystancji zgodnie z normami IEC 60364, co pozwala na systematyczne podejście do diagnozowania i utrzymania instalacji elektrycznych.

Pytanie 4

W celu wyrównania potencjałów na elementach metalowych, występujących w budynku, które w normalnych warunkach nie są częścią obwodu elektrycznego, należy zainstalować element oznaczony cyfrą

Ilustracja do pytania
A. 3
B. 1
C. 5
D. 7
Odpowiedź ta jest poprawna, ponieważ wyrównanie potencjałów na elementach metalowych w budynku, które nie są częścią obwodu elektrycznego, jest kluczowym zagadnieniem w zakresie bezpieczeństwa elektrycznego. Szyna wyrównawcza, oznaczona cyfrą '1', pełni istotną funkcję w zapewnieniu, że wszystkie metalowe elementy, takie jak rury, obudowy urządzeń czy inne konstrukcje, są połączone z uziemieniem. Dzięki temu zapobiega się powstawaniu niebezpiecznych różnic potencjałów, które mogą prowadzić do porażeń elektrycznych. W praktyce, stosowanie szyn wyrównawczych jest zgodne z normami, takimi jak PN-EN 62305, które określają wymagania dotyczące ochrony przed porażeniem elektrycznym i zjawiskami wyładowań atmosferycznych. Dobrą praktyką jest regularne sprawdzanie stanu tych połączeń oraz ich integralności, co przyczynia się do zwiększenia bezpieczeństwa użytkowników budynków. W przypadku awarii lub uszkodzenia instalacji, odpowiednio zainstalowana szyna wyrównawcza umożliwia skuteczne odprowadzenie prądów upływowych, zminimalizowanie ryzyka uszkodzenia sprzętu oraz ochronę zdrowia osób przebywających w danym obiekcie.

Pytanie 5

Jakie urządzenie powinno zostać zainstalowane w pośrednim układzie pomiarowym mocy czynnej w zakładzie przemysłowym?

A. Przekładnik prądowy
B. Przetwornicę napięcia
C. Transformator bezpieczeństwa
D. Transformator separacyjny
Przetwornica napięcia, transformator bezpieczeństwa oraz transformator separacyjny to urządzenia, które mają swoje specyficzne zastosowania, jednak nie są one odpowiednie do pomiaru mocy czynnej w pośrednich układach pomiarowych. Przetwornice napięcia służą do zmiany poziomu napięcia w instalacjach elektrycznych, co jest istotne w kontekście zasilania różnorodnych urządzeń, ale nie pełnią roli w bezpośrednim pomiarze mocy. Z kolei transformatory bezpieczeństwa, które mają na celu zabezpieczenie osób przed porażeniem prądem, również nie są odpowiednie do zastosowań pomiarowych, ponieważ ich główną funkcją jest izolacja oraz obniżanie napięcia do bezpiecznego poziomu. Transformator separacyjny, używany w systemach elektronicznych dla ochrony przed zakłóceniami oraz dla zapewnienia bezpieczeństwa, nie dostarcza odpowiednich danych pomiarowych niezbędnych do analizy mocy czynnej. Typowym błędem myślowym jest utożsamianie tych urządzeń z funkcją pomiarową, podczas gdy ich zastosowania są zupełnie inne i nie spełniają wymaganych standardów pomiarowych, takich jak precyzja oraz odpowiednie przekształcenie sygnałów pomiarowych. W kontekście norm, ważne jest przestrzeganie standardów dotyczących pomiarów elektrycznych, aby zapewnić rzetelne i dokładne wyniki analizy energetycznej.

Pytanie 6

Na którym rysunku przedstawiono adapter z gniazda E27 na gniazdo GU10?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybierając inne odpowiedzi, można zauważyć szereg nieporozumień dotyczących konstrukcji adapterów. Adaptery, które nie posiadają gwintu E27 po jednej stronie, nie będą mogły być wykorzystane w standardowych oprawach, co ogranicza ich funkcjonalność. Wiele osób myli również rodzaje gniazd, nie zdając sobie sprawy, że gniazdo GU10 wymaga dwóch bolców, a nie gwintu, co jest kluczowe w zastosowaniach oświetleniowych. Gniazdo E27, będące tak powszechnym standardem, jest zaprojektowane do współpracy z tradycyjnymi żarówkami, co czyni go nieodpowiednim do innych typów gniazd. W przypadku, gdy użytkownik wybiera adapter, który nie ma tej kombinacji, może napotkać problemy z montażem i działaniem. Warto również zwrócić uwagę na bezpieczeństwo; zastosowanie adapterów, które nie są zgodne z normami, może prowadzić do uszkodzenia żarówki lub oprawy, a nawet stwarzać zagrożenie pożarowe. Dlatego tak ważne jest zrozumienie, jakie gniazda i adaptery są odpowiednie do danego zastosowania, aby uniknąć nieprzyjemnych niespodzianek oraz zapewnić efektywność energetyczną i właściwe funkcjonowanie systemu oświetleniowego.

Pytanie 7

Wskaż symbol graficzny monostabilnego łącznika przyciskowego z zestykiem NO.

Ilustracja do pytania
A. Symbol 1.
B. Symbol 2.
C. Symbol 4.
D. Symbol 3.
Monostabilny łącznik przyciskowy z zestykiem NO (normalnie otwartym) jest kluczowym elementem w wielu systemach elektrycznych i automatyce. Symbol 1 przedstawia ten łącznik, ilustrując otwarty styk, który zamyka się po naciśnięciu przycisku, co jest zgodne z zasadami oznaczania w normach IEC 60617. W praktyce, tego rodzaju łączniki są powszechnie używane w urządzeniach, które wymagają chwilowego włączenia obwodu, jak na przykład w urządzeniach sterujących, alarmach czy systemach oświetleniowych. Dzięki swojej konstrukcji, monostabilne przyciski są bardziej energooszczędne, ponieważ nie wymagają stałego zasilania do utrzymania stanu włączenia. Zrozumienie tego symbolu i funkcji jest kluczowe dla właściwego projektowania i implementacji systemów elektrycznych. Używanie poprawnych symboli graficznych w dokumentacji technicznej jest istotne dla komunikacji między inżynierami i technikami, co wpływa na jakość i bezpieczeństwo instalacji elektrycznych.

Pytanie 8

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
B. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
C. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
D. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 9

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
B. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
C. Kontrola zabezpieczeń i stanu osłon części wirujących
D. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
Odpowiedź "Sprawdzenie stanu łożysk i pomiary elektryczne" jest poprawna, ponieważ te czynności kontrolne są zazwyczaj przeprowadzane w trakcie przeglądów technicznych, a nie podczas bieżącej eksploatacji urządzeń napędowych. W czasie ruchu maszyny, kluczowe jest monitorowanie parametrów operacyjnych, takich jak poziom drgań, ponieważ mogą one wskazywać na potencjalne problemy z wydajnością lub uszkodzenia. Kontrola poziomu drgań i działania układu chłodzenia pozwala na szybką identyfikację nieprawidłowości, które mogą prowadzić do poważnych awarii. Ochrona przewodów i odpowiednie osłony części wirujących są również istotnymi aspektami bezpieczeństwa w czasie pracy urządzenia. Zgodnie z normami, takimi jak ISO 9001, monitoring w czasie rzeczywistym oraz regularne kontrole stanu technicznego są kluczowe dla zapewnienia efektywności i bezpieczeństwa operacji. Przykładem praktycznym może być zastosowanie systemów monitorowania drgań, które w czasie rzeczywistym informują operatorów o konieczności interwencji, co pozwala na minimalizację ryzyka awarii.

Pytanie 10

Zamiast starego bezpiecznika trójfazowego 25 A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. A.
B. D.
C. C.
D. B.
Wybór niepoprawnej opcji może wynikać z kilku nieporozumień dotyczących specyfikacji wyłączników różnicowoprądowych. Niezrozumienie norm dotyczących prądu znamionowego może prowadzić do nieodpowiedniego doboru urządzenia. Na przykład, niektóre opcje mogą oferować zbyt wysokie prądy znamionowe, co skutkowałoby brakiem odpowiedniego zabezpieczenia dla obciążenia 25 A. W takich przypadkach, wybór urządzenia o niższym prądzie znamionowym może prowadzić do zadziałania wyłącznika w sytuacjach, które nie są krytyczne, co obniża jego skuteczność w ochronie. Ponadto, niewłaściwe zrozumienie liczby biegunów może doprowadzić do zastosowania wyłączników jednofazowych w instalacjach trójfazowych, co jest absolutnie niezalecane, ponieważ nie zapewnia to pełnej ochrony przed porażeniem prądem. Czułość wyłącznika różnicowoprądowego jest kluczowym parametrem, który powinien być dostosowany do specyfiki instalacji. Wybór urządzenia o zbyt dużej czułości, na przykład 100 mA, może nie zapewnić odpowiedniego zabezpieczenia, podczas gdy zbyt mała czułość może prowadzić do niepotrzebnych zadziałań. Takie błędy w doborze wyłączników mogą prowadzić do poważnych konsekwencji, w tym ryzyka wystąpienia pożaru czy porażenia prądem, co jest wysoce niepożądane w każdej instalacji elektrycznej. Dlatego kluczowe jest dobrać wyłącznik, który nie tylko spełnia normy, ale również jest odpowiednio dostosowany do charakterystyki używanych urządzeń i wymagań instalacji.

Pytanie 11

Które z przedstawionych narzędzi jest przeznaczone do demontażu przewietrznika z wału silnika elektrycznego?

Ilustracja do pytania
A. Narzędzie 3.
B. Narzędzie 2.
C. Narzędzie 4.
D. Narzędzie 1.
Narzędzie 2, czyli ściągacz, jest kluczowym narzędziem wykorzystywanym w procesie demontażu przewietrznika z wału silnika elektrycznego. Jego konstrukcja umożliwia równomierne rozłożenie siły, co jest niezwykle istotne, aby uniknąć uszkodzenia elementów. W praktyce, ściągacz stosuje się w sytuacjach, gdy przewietrznik mocno przylega do wału, co może zdarzyć się w wyniku długotrwałego użytkowania silnika. Właściwe użycie ściągacza polega na umieszczeniu go tak, aby mocno, ale delikatnie, chwytał za brzegi demontowanego elementu. Zgodnie z najlepszymi praktykami branżowymi, przed przystąpieniem do demontażu należy zawsze upewnić się, że silnik jest odłączony od źródła zasilania. Użycie ściągacza w ten sposób minimalizuje ryzyko uszkodzenia zarówno przewietrznika, jak i wału silnika. Pozostałe narzędzia, takie jak narzędzie 1, 3 i 4, nie są dostosowane do tej specyficznej pracy, co może prowadzić do nieefektywnego demontażu i potencjalnych uszkodzeń.

Pytanie 12

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy podnapięciowy
B. Dwubiegunowy przepięciowy
C. Dwubiegunowy instalacyjny nadprądowy
D. Dwubiegunowy różnicowoprądowy
Wyłącznik oznaczony symbolem CLS6-B6/2 to instalacyjny nadprądowy wyłącznik dwubiegunowy, który jest kluczowym elementem w systemach elektrycznych. Jego główną funkcją jest ochrona obwodów przed przeciążeniem i zwarciem, co zapobiega uszkodzeniom urządzeń, a także minimalizuje ryzyko pożaru. Instalacyjne wyłączniki nadprądowe są projektowane zgodnie z normą IEC 60898, co zapewnia ich wysoką jakość i niezawodność. Przykładowe zastosowanie to użycie tego typu wyłączników w instalacjach domowych, gdzie chronią obwody oświetleniowe oraz gniazda elektryczne. W zależności od specyfikacji, wyłączniki mogą być skonfigurowane do ochrony obwodów jednofazowych lub trójfazowych, co sprawia, że są wszechstronne. Dodatkowo, ich funkcjonalność może być wzbogacona o elementy takie jak współpraca z urządzeniami różnicowoprądowymi, co zwiększa bezpieczeństwo instalacji. Wybór odpowiedniego wyłącznika jest kluczowy dla efektywności i bezpieczeństwa całego systemu elektrycznego.

Pytanie 13

Który licznik należy zamontować w instalacji elektrycznej, aby umożliwić przedpłatowy system rozliczania energii elektrycznej?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Wybór niewłaściwego licznika do instalacji elektrycznej, jak w przypadku odpowiedzi A, C czy D, może prowadzić do poważnych problemów w zakresie zarządzania zużyciem energii. Liczniki, które nie są przystosowane do systemu przedpłatowego, nie mogą umożliwić użytkownikom wprowadzania kodów doładowujących, co jest kluczowym elementem tego systemu. Liczniki tradycyjne, które są powszechnie instalowane w domach, umożliwiają jedynie pomiar zużycia energii bez interakcji ze stroną użytkownika w zakresie przedpłat. Takie urządzenia są zgodne z innymi standardami, ale nie mają funkcjonalności, która jest istotna w kontekście nowoczesnych systemów zarządzania energią. Typowym błędem myślowym jest założenie, że każdy licznik energii może funkcyjnie zastąpić licznik przedpłatowy. Różnice te są kluczowe, szczególnie w sytuacjach, gdy użytkownicy chcą mieć większą kontrolę nad swoimi wydatkami. Aby wdrożyć skuteczny system zarządzania energią w budynkach mieszkalnych czy komercyjnych, konieczne jest zrozumienie specyfiki liczników i ich przeznaczenia. Dlatego właściwy wybór licznika, który wspiera system przedpłatowy, jest nie tylko kwestią techniczną, ale również finansową.

Pytanie 14

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt duże wzbudzenie silnika
B. Zbyt mała powierzchnia styku szczotek z komutatorem
C. Zbyt małe wzbudzenie silnika
D. Zbyt duży nacisk szczotek na komutator
Odpowiedź dotycząca za małej powierzchni styku szczotek z komutatorem jest poprawna, ponieważ kontakt między szczotkami a komutatorem jest kluczowy dla prawidłowego działania silnika prądu stałego. Niewłaściwa powierzchnia styku może prowadzić do zwiększonego oporu elektrycznego, co skutkuje większym iskrzeniem i nadmiernym zużyciem szczotek. W praktyce, odpowiedni dobór szczotek, które powinny być dobrze dopasowane do średnicy komutatora, jest istotny dla optymalizacji ich kontaktu. Standardy branżowe, takie jak normy IEC, podkreślają znaczenie jakości materiałów używanych do produkcji szczotek i ich geometrii, aby zapewnić skuteczny transfer prądu. Wymiana szczotek na modele o większej powierzchni styku lub z lepszymi właściwościami przewodzącymi może znacząco poprawić wydajność silnika i zmniejszyć iskrzenie, co zwiększa jego trwałość oraz bezpieczeństwo eksploatacji. Poprawny dobór szczotek i regularne ich kontrolowanie to praktyki, które powinny być stosowane w każdej aplikacji wykorzystującej silniki prądu stałego.

Pytanie 15

Złącze wtykowe przedstawione na rysunku przeznaczone jest do zastosowań w obszarach zagrożonych

Ilustracja do pytania
A. wzrostem temperatury.
B. wyziewami żrącymi.
C. wybuchem pyłu.
D. nadmierną wilgotnością.
Złącze wtykowe z oznaczeniem "Ex" jest przeznaczone do pracy w obszarach, gdzie istnieje ryzyko wystąpienia atmosfer wybuchowych, w tym wybuchu pyłu. Zgodnie z normami IECEx oraz ATEX, sprzęt oznaczony jako Ex musi spełniać rygorystyczne wymagania dotyczące bezpieczeństwa, aby zminimalizować ryzyko zapłonu. W obszarach przemysłowych, takich jak przemysł farmaceutyczny, chemiczny czy energetyczny, złącza te są niezbędne do zapewnienia bezpiecznej pracy. Przykłady zastosowań to instalacje elektryczne w silosach, gdzie mogą zbierać się drobne cząstki materiałów sypkich, co stwarza zagrożenie wybuchem. Wybór odpowiednich komponentów z certyfikacją Ex jest kluczowy dla ochrony pracowników i mienia, dlatego znajomość oznaczeń oraz standardów jest niezbędna w branży przemysłowej.

Pytanie 16

Przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej w biurze nie jest konieczne

A. wyłączenie zasilania z instalacji
B. zabezpieczenie przed przypadkowym włączeniem zasilania przez osoby nieuprawnione
C. pisemne polecenie do wykonania prac
D. oznaczenie i zabezpieczenie obszaru roboczego
Pisemne polecenie wykonania prac jest wymagane w wielu kontekstach, ale nie jest to czynność, która musi być zrealizowana przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej. W praktyce, istotne jest, aby przed rozpoczęciem jakichkolwiek prac związanych z instalacjami elektrycznymi, zadbać o bezpieczeństwo, co oznacza, że kluczowe jest wyłączenie zasilania i zabezpieczenie miejsca pracy. Pisemne polecenie, choć może być częścią procedury zarządzania bezpieczeństwem w niektórych organizacjach, nie jest ogólnym wymogiem w każdej sytuacji. Zgodnie z normami bezpieczeństwa, najważniejsze jest zminimalizowanie ryzyka poprzez odpowiednie izolowanie obszaru roboczego. Przykładowo, w przypadku awarii oświetlenia w biurze, pracownik powinien najpierw wyłączyć zasilanie, a następnie oznakować i zabezpieczyć miejsce pracy, aby uniknąć niebezpieczeństw związanych z porażeniem prądem. Te działania są kluczowe w celu zapewnienia bezpieczeństwa własnego oraz innych osób przebywających w pobliżu.

Pytanie 17

Jaką proporcję strumienia świetlnego kieruje się w dół w oprawie oświetleniowej klasy V?

A. 90 ÷ 100%
B. 60 ÷ 90%
C. 40 ÷ 60%
D. 0 ÷ 10%
Odpowiedzi wskazujące na wyższe wartości strumienia świetlnego, takie jak 40 ÷ 60%, 60 ÷ 90% oraz 90 ÷ 100%, koncentrują się na nieprawidłowych założeniach dotyczących funkcji opraw V klasy. Te klasy oprawy oświetleniowej są zaprojektowane w taki sposób, aby dostarczać minimalną ilość światła w kierunku podłogi, co jest sprzeczne z ideą intensywnego oświetlenia. Błędne założenie, że oprawy V klasy mogą emitować znaczną ilość światła w dół, wynika z nieporozumienia dotyczącego ich zastosowań oraz sposobu działania. W praktyce, oprawy te powinny być wykorzystywane w takich miejscach, gdzie kontrola nad oświetleniem jest kluczowa, a intensywne oświetlenie w dół mogłoby powodować olśnienie lub zwiększać zużycie energii. Należy również zwrócić uwagę na to, że istnieją standardy dotyczące odpowiedniego oświetlenia w budynkach, które jednoznacznie określają dopuszczalne wartości strumienia świetlnego w zależności od jego zastosowania. Stosowanie opraw z niewłaściwą klasą efektywności może prowadzić do niekorzystnych warunków pracy, a także do naruszenia przepisów dotyczących ochrony środowiska oraz efektywności energetycznej. Dlatego tak ważne jest, aby projektanci oświetlenia oraz użytkownicy byli świadomi różnic między klasami opraw, aby uniknąć błędnych decyzji projektowych.

Pytanie 18

Który z przedstawionych wyłączników różnicowoprądowych umożliwia monitorowanie prądu upływu w instalacji elektrycznej?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Wybór niewłaściwego wyłącznika różnicowoprądowego, który nie posiada wskaźnika prądu upływu, może prowadzić do poważnych konsekwencji w eksploatacji instalacji elektrycznej. Osoby decydujące się na użycie wyłączników bez takich wskaźników mogą być narażone na niebezpieczeństwo, ponieważ nie są w stanie monitorować potencjalnych zagrożeń związanych z prądem upływu. Brak wskaźnika oznacza, że użytkownik nie otrzymuje informacji o niewłaściwym działaniu instalacji, co może skutkować poważnymi uszkodzeniami sprzętu elektrycznego lub, w najgorszym wypadku, porażeniem prądem elektrycznym. Często spotykanym błędem jest założenie, że wszystkie wyłączniki różnicowoprądowe działają w ten sam sposób i oferują te same funkcjonalności. To mylne przekonanie prowadzi do niewłaściwego doboru urządzeń, co może skutkować nieodpowiednim zabezpieczeniem całego systemu elektrycznego. Warto zauważyć, że zgodnie z obowiązującymi normami, takim jak PN-EN 61008, wyłączniki różnicowoprądowe powinny być wyposażone w dodatkowe funkcje monitorujące, aby zapewnić maksymalne bezpieczeństwo użytkowania. Dokonując wyboru, należy zwracać uwagę na specyfikacje techniczne oraz dostępne funkcje, aby uniknąć potencjalnych zagrożeń i w pełni wykorzystać możliwości, jakie oferują nowoczesne rozwiązania w zakresie zabezpieczeń elektrycznych.

Pytanie 19

Jaką rolę pełnią uzwojenia pomocnicze w silniku prądu stałego?

A. Usuwają niekorzystne efekty wynikające z działania twornika
B. Obniżają rezystancję obwodu twornika
C. Generują napięcie remanentu
D. Przeciwdziałają rozbieganiu się silnika w przypadku spadku obciążenia
Uzwojenia pomocnicze w silniku prądu stałego to naprawdę ważny temat, bo mają spory wpływ na to, jak ten silnik działa. Kiedy silnik jest w ruchu, to nieuniknione są pewne zjawiska, jak efekt rozbiegowy czy spadek momentu obrotowego. Uzwojenia pomocnicze, poprzez swoje połączenia, pomagają w stabilizacji tego momentu obrotowego i wpływają na ogólną wydajność silnika. W praktyce widać to na przykład w elektromagnesach czy w napędach maszyn przemysłowych, gdzie te uzwojenia zwiększają stabilność pracy silnika. Co więcej, ich zastosowanie pomaga w poprawie charakterystyk silnika, gdy obciążenie się zmienia, co jest naprawdę istotne w inżynierii elektrycznej. Warto też zwrócić uwagę na to, że dobrze zaprojektowane uzwojenia pomocnicze mogą zmniejszyć wahania prądu i wydłużyć żywotność silnika. Zgodność z normami IEC i IEEE przy ich implementacji jest kluczowa, żeby silnik działał na optymalnym poziomie i był niezawodny przez długi czas.

Pytanie 20

Który z pomiarów służy do oceny efektywności zabezpieczenia przed dotykiem bezpośrednim w instalacjach do 1 kV?

A. Napięcia dotykowego
B. Impedancji zwarciowej
C. Rezystancji izolacji
D. Rezystancji uziemienia
Impedancja zwarciowa, napięcie dotykowe, a także rezystancja uziemienia to istotne parametry w kontekście bezpieczeństwa instalacji elektrycznych, lecz nie są one bezpośrednio związane z oceną skuteczności ochrony przed dotykiem bezpośrednim. Impedancja zwarciowa odnosi się do zachowania się instalacji podczas zwarcia, co ma znaczenie dla ochrony przed zwarciami, ale nie mówi nic o izolacyjności systemu. Napięcie dotykowe to wartość napięcia, jaką może otrzymać osoba mająca kontakt z elementami instalacji. Choć jego pomiar jest ważny, nie zastępuje on analizy rezystancji izolacji, która jest kluczowym wskaźnikiem stanu technicznego izolacji. Z kolei rezystancja uziemienia ma za zadanie zminimalizować potencjalne napięcia występujące w przypadku uszkodzenia izolacji, ale również nie pokazuje bezpośrednio skuteczności izolacji samej w sobie. Wiele osób myli te pojęcia, co może prowadzić do niepoprawnych wniosków i braku odpowiednich działań naprawczych. W kontekście norm i dobrych praktyk, np. IEC 60364, kluczowe jest zrozumienie, że prawidłowa izolacja jest fundamentem bezpieczeństwa, a pomiar rezystancji izolacji jest jednym z podstawowych działań w utrzymaniu instalacji elektrycznych.

Pytanie 21

Z instrukcji obsługi przedstawionego na rysunku miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego cyfrą

Ilustracja do pytania
A. 2 przy odłączonych przewodach pomiarowych.
B. 1 przy zwartych przewodach pomiarowych.
C. 1 przy odłączonych przewodach pomiarowych.
D. 2 przy zwartych przewodach pomiarowych.
Poprawna odpowiedź to 2 przy zwartych przewodach pomiarowych. Aby uzyskać dokładny pomiar rezystancji, konieczne jest wyzerowanie omomierza przed przystąpieniem do pomiarów. W tym celu należy ustawić przewody pomiarowe w pozycji zwartej, co eliminuje wpływ ich własnej oporności na pomiar. Użycie pokrętła oznaczonego cyfrą 2 w tej konfiguracji pozwala na precyzyjne ustawienie wskazówki miernika na zerową wartość. W praktyce, przed każdym pomiarem rezystancji, zaleca się przeprowadzanie tego kroku, aby zapewnić rzetelność wyników. W branży elektrycznej i elektronicznej, zgodnie z najlepszymi praktykami, takie działanie minimalizuje błędy pomiarowe i zwiększa dokładność urządzeń pomiarowych. Dokładne wyzerowanie omomierza jest kluczowe, zwłaszcza w aplikacjach wymagających dużej precyzji, jak pomiary w obwodach elektronicznych czy analiza materiałów. Warto również pamiętać, że nieprawidłowe przeprowadzenie tego procesu może prowadzić do błędnych wniosków i dalszych problemów w analizie diagnostycznej.

Pytanie 22

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów
A. instalacji elektrycznej.
B. linii kablowej zasilającej budynek.
C. instalacji odgromowej budynku.
D. linii napowietrznej niskiego napięcia.
Wybór instalacji elektrycznej jako poprawnej odpowiedzi jest zasłużony, ponieważ parametry techniczne przedstawione w tabeli, takie jak moc przyłączeniowa, rodzaj przyłącza, uziemienie oraz liczba obwodów, są kluczowe dla prawidłowego zaprojektowania i funkcjonowania instalacji elektrycznej w obiektach budowlanych. Moc przyłączeniowa wskazuje na maksymalne zapotrzebowanie na energię elektryczną, co jest istotne przy doborze odpowiednich przewodów i zabezpieczeń. Rodzaj przyłącza oraz system uziemienia są niezwykle ważne dla bezpieczeństwa użytkowników, gdyż wpływają na właściwe odprowadzenie ładunków elektrycznych i ochronę przed porażeniem prądem. Typy przewodów oraz liczba obwodów są również kluczowe dla zapewnienia stabilności i elastyczności instalacji, umożliwiając podział obciążenia oraz efektywne zarządzanie energią w budynku. Zgodność z normami PN-IEC 60364 oraz innymi standardami branżowymi jest niezbędna dla osiągnięcia wysokich standardów bezpieczeństwa oraz efektywności energetycznej.

Pytanie 23

Na zdjęciach przedstawiono kolejno od lewej typy trzonków źródeł światła

Ilustracja do pytania
A. E27,G4,G9,MR11
B. E27,MR11,G4,G9
C. E27,G9,MR11,G4
D. E27,G4,MR11,G9
Zrozumienie różnorodności trzonków źródeł światła jest kluczowe dla efektywnego i praktycznego ich wykorzystania. Wybór niewłaściwej kombinacji trzonków, jak w przypadku niepoprawnych odpowiedzi, może prowadzić do nieefektywnego oświetlenia, a także do problemów z kompatybilnością urządzeń. Na przykład, pomylenie trzonka E27 z G4 w praktycznym zastosowaniu jest poważnym błędem, ponieważ E27 to standardowy gwint dla większych żarówek, podczas gdy G4 jest przeznaczony dla niskonapięciowych źródeł światła, takich jak miniaturowe halogeny. W przypadku odpowiedzi, które sugerują inne porządki, kluczowe jest zrozumienie, że różne typy trzonków mają specyficzne wymiary i przeznaczenia, co sprawia, że ich zamiana lub niewłaściwa identyfikacja prowadzi do nieprawidłowego działania systemu oświetleniowego. Niepoprawne odpowiedzi mogą także wynikać z błędnego przekonania, że różne trzonki mogą być stosowane zamiennie, co nie jest prawdą w kontekście technicznych wymagań. Wiedza o tym, jakie trzonki są używane w określonych zastosowaniach, pozwala na lepsze planowanie i realizację projektów oświetleniowych, jak również na unikanie kosztownych pomyłek przy zakupie źródeł światła.

Pytanie 24

Widoczny zanik w obwodzie instalacji elektrycznej może zapewnić

A. bezpiecznik instalacyjny
B. wyłącznik różnicowoprądowy
C. wyłącznik instalacyjny płaski
D. ochronnik przeciwprzepięciowy
Bezpiecznik instalacyjny jest kluczowym elementem zabezpieczeń obwodów elektrycznych, który pełni funkcję zabezpieczającą przed przeciążeniem oraz zwarciem. Jego głównym zadaniem jest przerwanie obwodu w momencie, gdy prąd przekracza ustalony poziom, co minimalizuje ryzyko uszkodzenia instalacji oraz pożaru. W praktyce, bezpiecznik instalacyjny montowany jest w rozdzielni elektrycznej i można go łatwo zresetować lub wymienić po wystąpieniu awarii. Stosowanie bezpieczników zgodnie z normą PN-EN 60898-1 zapewnia skuteczną ochronę przed nadmiernym prądem i przeciążeniem, co jest niezbędne w bezpiecznym użytkowaniu instalacji elektrycznych. Warto zaznaczyć, że bezpieczniki instalacyjne powinny być dobrane odpowiednio do charakterystyki obwodu oraz zastosowanych urządzeń, co zwiększa ich efektywność.

Pytanie 25

Które źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Żarówkę wolframową.
B. Lampę neonową.
C. Świetlówkę kompaktową.
D. Żarówkę halogenową.
Odpowiedzi, które wskazują na inne źródła światła, mogą wydawać się na pierwszy rzut oka logiczne, jednak każda z nich posiada cechy, które różnią się od świetlówki kompaktowej. Żarówka halogenowa jest ulepszoną wersją żarówki tradycyjnej, która działa na zasadzie podgrzewania włókna tungstenowego. Choć ma wyższą wydajność niż standardowe żarówki żarowe, jej kształt i działanie nie są zgodne z tym, co przedstawiono na zdjęciu. Żarówka wolframowa, tak jak halogenowa, również wykorzystuje włókno, emitując ciepłe światło, ale jej kształt jest znacznie bardziej okrągły i nie przyjmuje postaci spiralnej. Lampa neonowa, z drugiej strony, jest zupełnie innym typem źródła światła; wykorzystuje gaz neonowy do emisji charakterystycznych kolorów, jednak nie posiada cech świetlówki kompaktowej. Typowe błędy myślowe w tym kontekście obejmują myślenie, że ponieważ źródła światła różnią się jedynie w kilku aspektach, można je utożsamiać. Ważne jest, aby zrozumieć podstawowe różnice w budowie i działaniu różnych typów źródeł światła, co pozwala na świadome ich dobieranie w zależności od potrzeb oświetleniowych i energetycznych. W kontekście nowoczesnych rozwiązań oświetleniowych, znajomość tych różnic jest kluczowa dla efektywnego projektowania systemów oświetleniowych oraz optymalizacji kosztów energii.

Pytanie 26

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Watomierza
B. Megawoltomierza
C. Omomierza
D. Megaomomierza
Wybór nieodpowiednich przyrządów pomiarowych do oceny rezystancji izolacji może prowadzić do poważnych konsekwencji zarówno dla bezpieczeństwa, jak i funkcjonalności instalacji elektrycznej. Watomierz, wykorzystujący zjawisko pomiaru mocy w obwodach elektrycznych, nie jest przeznaczony do oceny stanu izolacji. Jego zastosowanie ogranicza się do pomiaru energii elektrycznej, co jest całkowicie odmiennym zadaniem. Omomierz, mimo że mierzy opór, jest stosowany przy normalnych warunkach pracy, co oznacza, że nie uwzględnia on stanu izolacji pod wpływem wysokich napięć, które są kluczowe w tym kontekście. W przypadku megawoltomierza, jest to urządzenie służące do pomiaru napięcia, a nie rezystancji, co czyni go zupełnie nieprzydatnym w tym aspekcie. Typowym błędem jest założenie, że każdy przyrząd pomiarowy, który mierzy opór, spełni wymagania dla pomiaru izolacji, podczas gdy w rzeczywistości tylko megaomomierz, działający w odpowiednich warunkach napięciowych, może dostarczyć wiarygodne dane. Właściwe zrozumienie zastosowania każdego z tych urządzeń oraz ich ograniczeń jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 27

Który z podanych materiałów charakteryzuje się najniższą rezystywnością?

A. Miedź
B. Aluminium
C. Nichrom
D. Stal
Wybór aluminium, nichromu czy stali jako materiałów do zastosowań elektrycznych może prowadzić do nieefektywności ze względu na ich właściwości rezystywnościowe. Aluminium, choć jest lżejsze i tańsze od miedzi, ma wyższą rezystywność wynoszącą około 2.65 µΩ·m, co oznacza większe straty energii w przewodach oraz konieczność stosowania większych przekrojów dla uzyskania podobnych parametrów przewodzenia prądu. Nichrom, używany głównie w elementach grzejnych, ma rezystywność na poziomie 1.10 µΩ·m, ale jego zastosowanie w systemach przewodzenia energii elektrycznej jest ograniczone ze względu na nieodpowiednie właściwości mechaniczne i korozję. Z kolei stal, która ma znacznie wyższą rezystywność, nie jest dobrym przewodnikiem prądu, co czyni ją mniej efektywną w zastosowaniach wymagających dobrego przewodnictwa elektrycznego. Typowym błędem myślowym w tej kwestii jest założenie, że materiały o wyższej wytrzymałości mechanicznej są również dobrymi przewodnikami, co nie zawsze jest prawdą. Właściwy dobór materiałów do zastosowań elektrycznych oparty jest na zrozumieniu ich rezystywności oraz wpływu na wydajność systemów energetycznych. W praktyce, zgodnie ze standardami branżowymi, miedź pozostaje dominującym materiałem w aplikacjach elektrycznych ze względu na swoje doskonałe właściwości przewodnikowe, co potwierdzają wieloletnie badania i doświadczenia inżynierów w tej dziedzinie.

Pytanie 28

Który element instalacji, montowany w rozdzielnicy, przedstawiono na rysunku?

Ilustracja do pytania
A. Ogranicznik przepięć.
B. Wyłącznik nadprądowy.
C. Lampkę kontrolną.
D. Sygnalizator dzwonkowy.
Odpowiedź "Ogranicznik przepięć" jest poprawna, ponieważ jego podstawowym zadaniem jest ochrona instalacji elektrycznej przed nagłymi wzrostami napięcia, które mogą być spowodowane na przykład wyładowaniami atmosferycznymi czy też skokami napięcia w sieci. Ograniczniki przepięć montowane w rozdzielnicach są kluczowym elementem systemów zabezpieczeń, zgodnie z normą PN-EN 61643-11, która określa wymogi dotyczące tych urządzeń. Przykładowo, w budynkach mieszkalnych oraz komercyjnych zastosowanie ograniczników przepięć pozwala na ochronę drogiego sprzętu elektronicznego, takich jak komputery, telewizory czy systemy alarmowe, przed uszkodzeniami wynikającymi z przepięć. Warto zauważyć, że ograniczniki przepięć są projektowane tak, aby działały w sposób automatyczny, minimalizując potrzebę interwencji ze strony użytkowników. W praktyce zaleca się umieszczenie takich urządzeń w każdym nowo projektowanym obiekcie, co wychodzi naprzeciw dobrym praktykom w zakresie ochrony elektrycznej.

Pytanie 29

Na którym rysunku zamieszczono gniazdo wtyczkowe bryzgoszczelne?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Gniazdo wtyczkowe bryzgoszczelne, które widzisz na zdjęciu C, zostało zaprojektowane tak, żeby dobrze chronić przed wilgocią i wodą. To znaczy, że nadaje się do miejsc, gdzie warunki atmosferyczne mogą być naprawdę trudne. Jest zgodne z normami PN-EN 60670-1, które mówią, jakie powinny być wymagania dla takich gniazd. Często mają dodatkowe uszczelki i osłony, które blokują wodę przed dostaniem się do wnętrza połączenia elektrycznego. W praktyce, gniazda bryzgoszczelne stosuje się w ogrodach, na tarasach albo w pobliżu basenów, gdzie zwykłe gniazda mogłyby się łatwo zepsuć. Fajnie jest też zwracać uwagę na oznaczenia IP, które mówią, jak to gniazdo jest chronione przed wodą i pyłem. Używanie takich gniazd to lepsze bezpieczeństwo dla użytkowników i dłuższa żywotność naszej instalacji elektrycznej.

Pytanie 30

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. zamiana dwóch faz miejscami
B. zamiana jednej fazy z przewodem neutralnym
C. brak podłączenia dwóch faz
D. brak podłączenia jednej fazy
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 31

Do jakiej kategorii urządzeń elektrycznych należą linie napowietrzne i kablowe?

A. Odbiorczych
B. Wytwórczych
C. Przesyłowych
D. Pomocniczych
Linie napowietrzne i kablowe zaliczają się do grupy urządzeń przesyłowych, ponieważ ich główną funkcją jest transport energii elektrycznej na znaczną odległość, co jest kluczowe dla zasilania odbiorców końcowych oraz dla stabilności systemu energetycznego. Przesył energii elektrycznej odbywa się z wykorzystaniem linii napowietrznych, które są powszechnie stosowane w terenach wiejskich oraz w obszarach, gdzie nie ma potrzeby zakupu droższych kabli. Dobre praktyki w zakresie przesyłu energii elektrycznej zakładają minimalizację strat, które mogą występować w trakcie transportu, co jest istotne dla efektywności energetycznej. Przykładowo, zastosowanie linii wysokiego napięcia pozwala na przesyłanie dużych mocy przy mniejszych stratach. W kontekście standardów, linie przesyłowe powinny spełniać normy określone przez Międzynarodową Komisję Elektrotechniczną (IEC) oraz krajowe regulacje dotyczące jakości i bezpieczeństwa. W praktyce oznacza to, że projektując systemy przesyłowe, inżynierowie muszą uwzględniać nie tylko parametry techniczne, ale również aspekt ochrony środowiska oraz wpływ na otoczenie.

Pytanie 32

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. gG
B. gL
C. aM
D. aR
Wybór wkładek topikowych aM, gL, czy aR w kontekście zabezpieczeń nadprądowych obwodów jednofazowych gniazd ogólnego przeznaczenia jest niewłaściwy, ponieważ każdy z tych typów jest zaprojektowany do innego rodzaju zastosowań i nie spełnia wymagań stawianych wkładkom gG. Wkładki aM służą głównie do zabezpieczania silników, a ich charakterystyka prądowa nie jest dostosowana do ochrony obwodów z gniazdami. W przypadku wkładek gL, ich zastosowanie jest ograniczone do obwodów, w których nie występują duże prądy rozruchowe, co czyni je mniej efektywnymi w obwodach ogólnych. Z kolei wkładki aR są przeznaczone do ochrony układów elektronicznych, a ich charakterystyka może być niewystarczająca dla obwodów z gniazdami, gdzie mogą wystąpić skoki prądu. Zrozumienie różnicy pomiędzy tymi typami wkładek jest kluczowe dla prawidłowego doboru zabezpieczeń. Błędem jest również założenie, że wszystkie typy wkładek działają w podobny sposób; każde z nich ma swoją specyfikę, która musi być brana pod uwagę w procesie projektowania instalacji elektrycznych. Dlatego tak ważne jest, aby przed wyborem wkładki topikowej poznać wymagania konkretnego obwodu oraz zastosowane urządzenia, co pozwoli na odpowiednie zabezpieczenie i zapewnienie bezpieczeństwa użytkowników.

Pytanie 33

W jaki sposób i przewodem o jakim przekroju ma być wykonana trójfazowa wewnętrzna linia zasilająca (WLZ), której obciążalność prądowa wynosi 220 A?

Obciążalność prądowa długotrwała w A przewodów
o żyłach Cu w izolacji PVC ułożonych w różny sposób
Przekrój
znamionowy żył
w mm²
Instalacja wykonana
sposobami
CE
70211216
95225238
gdzie:
C – przewody układane po wierzchu, na ścianie lub suficie drewnianym
E – przewody wielożyłowe ułożone swobodnie w powietrzu lub korytku kablowym
A. Sposób E i 70 mm2
B. Sposób C i 95 mm2
C. Sposób E i 95 mm2
D. Sposób C i 70 mm2
Wybór odpowiedzi "Sposób E i 95 mm2" jest poprawny, ponieważ przewody o przekroju 95 mm², ułożone zgodnie z metodą E, mają obciążalność prądową wynoszącą 238 A. To oznacza, że są w stanie z powodzeniem obsłużyć wymagane obciążenie prądowe wynoszące 220 A, co jest kluczowe dla zapewnienia bezpieczeństwa oraz efektywności całego systemu zasilania. Sposób E wskazuje na ułożenie przewodów w sposób, który umożliwia swobodny przepływ powietrza wokół nich, co skutkuje lepszym odprowadzaniem ciepła i minimalizacją ryzyka przegrzania. Przykładowo, w instalacjach przemysłowych stosuje się tę metodę w przypadku zasilania dużych maszyn oraz urządzeń, gdzie obciążenia są znaczne i wymagana jest wysoka niezawodność. Zastosowanie odpowiedniego przekroju przewodu oraz metody ułożenia jest zgodne z normą PN-IEC 60364 oraz przepisami bezpieczeństwa, co podkreśla znaczenie stosowania właściwych standardów w praktyce.

Pytanie 34

Który z podanych odbiorników energii elektrycznej charakteryzuje się najkorzystniejszym współczynnikiem mocy w aspekcie ekonomicznym?

A. Silnik uniwersalny
B. Wzbudnik indukcyjny
C. Silnik asynchroniczny
D. Piec oporowy
Wybór silnika uniwersalnego, wzbudnika indukcyjnego czy silnika asynchronicznego jako bardziej korzystnego z punktu widzenia współczynnika mocy jest mylny, ponieważ te urządzenia charakteryzują się istotnymi stratami energii i niższym współczynnikiem mocy, zazwyczaj wynoszącym od 0,6 do 0,9. Silnik uniwersalny, używany głównie w zastosowaniach domowych, takich jak odkurzacze, ma zdolność do pracy zarówno na prądzie stałym, jak i zmiennym, lecz jego zmienna charakterystyka obciążenia oraz niskie wartości współczynnika mocy w niektórych stanach roboczych obniżają jego efektywność energetyczną. Wzbudnik indukcyjny, stosowany głównie w aplikacjach wymagających regulacji, takich jak prądnice, może generować znaczące straty energii ze względu na zjawiska indukcyjne, co również wpływa na jego korzystność ekonomiczną. Silnik asynchroniczny, popularny w przemyśle, ma relatywnie dobry współczynnik mocy, ale wciąż nie osiąga efektywności pieca oporowego, a jego zastosowania często wymagają dodatkowych układów kompensacyjnych, które zwiększają koszty. Wybierając odpowiednie urządzenie, warto zwrócić uwagę na jego zastosowanie, a także na możliwe straty energii, które mogą znacząco wpłynąć na całkowity koszt eksploatacji.

Pytanie 35

Minimalna akceptowalna wartość rezystancji izolacji dla przewodów instalacji przeznaczonej na napięcie znamionowe nieprzekraczające 500 V, w tym FELV, wynosi

A. 1,5 MΩ
B. 1,0 MΩ
C. 0,5 MΩ
D. 2,0 MΩ
Wybór wartości 1,5 MΩ, 0,5 MΩ lub 2,0 MΩ jako minimalnej rezystancji izolacji dla instalacji elektrycznych do 500 V jest wynikiem nieporozumień dotyczących standardów bezpieczeństwa i wymagań technicznych. Wartość 1,5 MΩ może wydawać się odpowiednia w kontekście innych zastosowań, jednak nie spełnia podstawowych norm dla instalacji na napięcie do 500 V, które wyraźnie określają minimalną wartość na poziomie 1,0 MΩ. Z kolei wartość 0,5 MΩ jest całkowicie niewystarczająca i stwarza poważne ryzyko dla bezpieczeństwa, ponieważ nie zapewnia odpowiedniej ochrony przed przebiciem i porażeniem prądem. Natomiast 2,0 MΩ, choć wydaje się być odpowiednio wysoka, nie jest zakładanym minimum, co może prowadzić do nadmiernych kosztów w kontekście wymogów projektowych, gdzie nie zawsze jest konieczne stosowanie tak wysokiej wartości. W praktyce rzeczywiste wymagania powinny być dostosowane do specyfiki instalacji oraz jej przeznaczenia, jednak zawsze z poszanowaniem ustalonych norm i standardów. Błędem jest zatem myślenie, że wartości wyższe niż wymagane są zawsze korzystne; kluczowe jest przestrzeganie ściśle określonych norm, które zostały opracowane w celu ochrony bezpieczeństwa ludzi i mienia.

Pytanie 36

Na którym rysunku przedstawiono prawidłowy, zgodny z zasadami BHP sposób wykonania połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Prawidłowe wykonanie połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Na rysunku B, drut jest odpowiednio zagięty i umieszczony pod główką śruby, co pozwala na skuteczne zaciskanie i zapobiega jego wypadnięciu. W praktyce, ważne jest, aby drut był zagięty w odpowiedni sposób, co zapewnia pełne przyleganie do powierzchni styku, co z kolei minimalizuje ryzyko powstawania iskrzenia oraz przegrzewania połączenia. Zgodnie z normami PN-IEC 60947-7-1, zaleca się, aby połączenia były wykonywane w sposób, który zapewnia ich trwałość oraz odporność na wibracje. Dobrze wykonane połączenie zwiększa efektywność przesyłania energii elektrycznej oraz zmniejsza ryzyko awarii, co jest kluczowe w kontekście użytkowania złożonych systemów elektrycznych.

Pytanie 37

Który rodzaj przewodu przedstawiono na rysunku?

Ilustracja do pytania
A. Wielożyłowy uzbrojony.
B. Jednożyłowy uzbrojony.
C. Jednodrutowy nieuzbrojony.
D. Wielodrutowy nieuzbrojony.
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia w interpretacji konstrukcji przewodów elektrycznych. Odpowiedź "Jednożyłowy uzbrojony" sugeruje, że przewód składa się z jednej, grubej żyły otoczonej metalowym pancerzem. Przewody jednożyłowe są często używane w instalacjach, gdzie wymagana jest wysoka odporność na mechaniczne uszkodzenia, jednak w przypadku przedstawionego rysunku nie ma żadnych oznak uzbrojenia. To prowadzi do kolejnego błędnego wniosku, który wskazuje na "Wielożyłowy uzbrojony". Takie przewody posiadają wiele żył, ale ich konstrukcja wskazuje na obecność zabezpieczeń mechanicznych, co nie ma miejsca w analizowanym przypadku. Z kolei "Jednodrutowy nieuzbrojony" nie odzwierciedla budowy przewodu, ponieważ sugeruje, że przewód składa się z jednego drutu, co jest sprzeczne z widocznym przekrojem. W praktyce, przewody uzbrojone często stosowane są w miejscach, gdzie mogą być narażone na uszkodzenia, co również wyklucza ich obecność w tym przypadku. Kluczowym aspektem w rozróżnieniu tych przewodów jest znajomość ich struktury i przeznaczenia, co jest niezbędne do prawidłowego wyboru materiałów w instalacjach elektrycznych, aby zapewnić bezpieczeństwo oraz efektywność energetyczną. Zrozumienie różnicy między różnymi typami przewodów pomoże uniknąć poważnych błędów w projektach elektrycznych.

Pytanie 38

Który element rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik czasowy.
B. Lampkę sygnalizacyjną trójfazową.
C. Czujnik zaniku fazy.
D. Regulator temperatury.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, jest kluczowym elementem w każdej rozdzielnicy elektrycznej. Jej główną funkcją jest wizualna sygnalizacja obecności napięcia w trzech fazach instalacji. Dzięki zastosowaniu kilku diod LED lub żarówek, użytkownik może szybko zidentyfikować, czy wszystkie fazy są pod napięciem. To istotne w kontekście zapewnienia stabilności i bezpieczeństwa działania urządzeń trójfazowych, takich jak silniki elektryczne czy maszyny przemysłowe. W przypadku braku napięcia w którejkolwiek z faz, zdradza to problem, który może prowadzić do uszkodzeń sprzętu lub przestojów w produkcji. Dobre praktyki w zakresie instalacji elektrycznych zalecają umieszczanie lamp sygnalizacyjnych w widocznych miejscach, co umożliwia szybkie reagowanie na ewentualne awarie. Ważne jest także, aby lampki były zgodne z normami bezpieczeństwa i odporne na warunki panujące w danym środowisku pracy.

Pytanie 39

Którego z przedstawionych na rysunkach przyrządów pomiarowych należy użyć w celu zbadania rozkładu temperatury wewnątrz rozdzielnicy?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Przyrząd pomiarowy przedstawiony na rysunku B to kamera termowizyjna, który jest niezastąpionym narzędziem w diagnostyce elektronicznej i energetycznej. Umożliwia bezkontaktowe skanowanie obiektów, co pozwala na szybkie i efektywne zlokalizowanie miejsc o podwyższonej temperaturze. W kontekście rozdzielnic elektrycznych, stosowanie kamery termowizyjnej jest praktyką zalecaną według normy IEC 60364, która podkreśla znaczenie monitorowania temperatury w instalacjach elektrycznych, aby zapobiegać przeciążeniom oraz wykrywać wczesne oznaki uszkodzeń połączeń czy komponentów. Przykładem zastosowania może być regularne wykonywanie inspekcji termograficznych w zakładach przemysłowych, co pozwala na identyfikację problemów zanim dojdzie do awarii, co w dłuższej perspektywie skutkuje obniżeniem kosztów eksploatacji oraz poprawą bezpieczeństwa pracy. Dodatkowo, analiza termograficzna wspiera działania związane z utrzymaniem ruchu, a także jest elementem audytów energetycznych, mających na celu optymalizację zużycia energii.

Pytanie 40

Które z przedstawionych parametrów dotyczą wyłącznika silnikowego?

  • Napięcie zasilania 230 V AC
  • Styk separowany 2P
  • Zakres nastawy czasu 0,1 s ÷ 576 h
  • Rodzaje funkcji A, B, C, D
  • Ilość modułów 1
  • Stopień ochrony IP 20
  • Napięcie znamionowe łączeniowe 230/400 V AC
  • Prąd znamionowy 25 A
  • Prąd znamionowy różnicowy 100 mA
  • Stopień ochrony IP 40
  • Max. moc silnika 1,5 kW
  • Zakres nastawy wyzwalacza przeciążeniowego It = 2,5 ÷ 4 A
  • Zakres nastawy wyzwalacza zwarciowego Im = 56 A
  • Prąd znamionowy 20 A
  • Napięcie znamionowe 24 V AC
  • Konfiguracja zestyków 1 NO + 1 NC
  • Ilość modułów 1
  • Znamionowa moc przy napięciu 230 V: 4 kW
A.B.C.D.
A. C.
B. A.
C. D.
D. B.
Wybór odpowiedzi, która nie odnosi się do parametrów wyłącznika silnikowego, wskazuje na nieporozumienie dotyczące funkcji i zastosowania tego urządzenia w systemach elektrycznych. Wyłączniki silnikowe mają na celu ochronę silników przed przeciążeniem oraz zwarciem, a ich kluczowymi parametrami są maksymalna moc, prąd znamionowy oraz czas reakcji. Niezrozumienie tych podstawowych zasad może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa i efektywności instalacji elektrycznych. Nieopatrzne wybieranie wyłącznika bez znajomości jego maksymalnych parametrów może skutkować uszkodzeniem silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy. Ponadto, brak wiedzy na temat standardów, takich jak IEC 60947-4-1, może prowadzić do zastosowania niewłaściwych rozwiązań, które nie spełniają wymogów bezpieczeństwa. Zrozumienie koncepcji dotyczących wyłączników silnikowych i ich specyfikacji jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem i utrzymywaniem infrastruktury elektrycznej. Dlatego ważne jest, aby zwracać uwagę na szczegółowe parametry techniczne przy doborze wyłącznika, aby uniknąć typowych błędów, które mogą wyniknąć z niedostatecznej wiedzy lub ignorancji branżowych standardów.