Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 09:58
  • Data zakończenia: 8 grudnia 2025 10:10

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jak definiuje się natężenie przepływu Q cieczy w rurociągu?

A. iloczyn prędkości cieczy oraz czasu jej przepływu.
B. stosunek objętości cieczy, która przechodzi przez przekrój do czasu, w jakim dokonuje się ten przepływ.
C. stosunek pola przekroju rurociągu do prędkości, z jaką ciecz przepływa.
D. iloczyn ciśnienia cieczy oraz pola przekroju rurociągu.
Poprawna odpowiedź definiuje natężenie przepływu Q jako stosunek objętości cieczy przepływającej przez przekrój poprzeczny rurociągu do czasu, w którym ta objętość przechodzi przez dany przekrój. Wzór na natężenie przepływu można zapisać jako Q = V/t, gdzie V to objętość cieczy, a t to czas. To podejście jest fundamentalne w hydraulice i inżynierii cieczy, ponieważ pozwala na dokładne określenie ilości cieczy przepływającej przez system. W praktyce, znajomość natężenia przepływu jest kluczowa przy projektowaniu systemów wodociągowych, kanalizacyjnych oraz instalacji przemysłowych, gdzie zachowanie odpowiednich parametrów przepływu jest niezbędne dla efektywności i bezpieczeństwa. W standardach branżowych, takich jak normy ISO dotyczące przepływu cieczy, definiuje się metody pomiaru Q, co podkreśla znaczenie tej wielkości w inżynierii fluidów. Właściwe obliczenie natężenia przepływu jest także kluczowe w kontekście zachowania energii w systemach hydraulicznych, co wpływa na dobór odpowiednich pomp oraz armatury.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Tłokowa z dwustronnym tłoczyskiem
B. Tłokowa z jednostronnym tłoczyskiem
C. Teleskopowa
D. Nurnikowa
Konstrukcje teleskopowe siłowników hydraulicznych charakteryzują się tym, że składają się z kilku cylindrów, które są wciągane jeden w drugi. Dzięki temu, nawet przy stosunkowo krótkiej długości całkowitej, teleskopowe siłowniki mogą osiągnąć znaczny skok. Jest to szczególnie przydatne w zastosowaniach, gdzie przestrzeń jest ograniczona, a wymagana jest duża ruchomość, na przykład w dźwigach, podnośnikach czy maszynach budowlanych. Teleskopowe siłowniki są często wykorzystywane w przemyśle, gdzie zaawansowane rozwiązania hydrauliczne są wymagane do efektywnej pracy. W standardach branżowych, takich jak ISO 6022, podkreśla się znaczenie teleskopowych siłowników w kontekście ich zdolności do pracy w ograniczonej przestrzeni, co czyni je niezastąpionymi w wielu zastosowaniach. W praktyce, przy odpowiednim doborze materiałów oraz technologii produkcji, teleskopowe siłowniki mogą pracować z dużymi obciążeniami i przy wysokich ciśnieniach, co zapewnia ich trwałość i niezawodność.

Pytanie 4

Którego urządzenia dotyczą podane w tabeli parametry?

Ilość wejść 24 VDC
Ilość wyjść przekaźnikowych
Rozszerzenie we/wyMaksymalna ilość
Maksymalna ilość we/wy
Pojemność programu
Czas przetwarzaniaInstrukcji podstawowych
systemowych
Pamięć danychWewnętrznych bajtów
Słów wewnętrznych
Timery
Liczniki
ZasilanieZnamionowe napięcie zasilania
A. Sterownika PLC.
B. Falownika.
C. Silnika.
D. Czujnika optycznego.
Wybór nieprawidłowej odpowiedzi może wynikać z mylnego zrozumienia specyfiki poszczególnych urządzeń. Silniki, które są integralnością wielu systemów automatyzacji, nie posiadają parametrów związanych z programowalnością, a ich głównym zadaniem jest konwersja energii elektrycznej na ruch mechaniczny. Cechy, takie jak liczba wejść czy wyjść, nie są dla nich charakterystyczne, ponieważ w przypadku silników zwykle mówimy o parametrach takich jak moc, moment obrotowy czy prędkość obrotowa. Z drugiej strony, falowniki to urządzenia służące do regulacji prędkości obrotowej silników AC, które również nie są programowalne w tym samym sensie co PLC. To prowadzi do nieporozumień, gdyż osoby wybierające falownik mogą myśleć o regulacji, zamiast o programowalnej logice i automatyzacji. Czujniki optyczne, jako urządzenia wykrywające obecność obiektów, również nie mają zastosowania do parametrów programowalnych, a ich specyfikacja dotyczy raczej czułości, zasięgu oraz technologii detekcji. Dlatego wybór tych odpowiedzi prowadzi do zrozumienia, że te urządzenia, choć kluczowe w różnych aplikacjach automatyzacyjnych, nie są w stanie spełnić roli sterownika PLC, którego główną funkcją jest zarządzanie i programowanie procesów przemysłowych.

Pytanie 5

Po przeprowadzeniu napraw w szafie sterowniczej numerycznej obrabiarki, pracownik doznał porażenia prądem. Jest nieprzytomny, lecz oddycha. W pierwszej kolejności, po odłączeniu go od źródła prądu, powinno się wykonać następujące kroki:

A. ustawić poszkodowanego na boku, zapewnić mu świeże powietrze i rozpocząć sztuczne oddychanie
B. ustawić poszkodowanego w stabilnej pozycji bocznej i wezwać pomoc medyczną
C. ułożyć poszkodowanego na noszach w wygodnej pozycji i przetransportować go do lekarza w celu oceny stanu zdrowia
D. wezwać pomoc medyczną, położyć poszkodowanego na plecach i rozpocząć sztuczne oddychanie
Odpowiedź, w której porażony zostaje ułożony w pozycji bocznej ustalonej, jest prawidłowa, ponieważ zapewnia to drożność dróg oddechowych i minimalizuje ryzyko aspiracji. Pozycja ta jest kluczowa w przypadku osób nieprzytomnych, które oddychają, ponieważ pozwala na swobodne wydostawanie się ewentualnych wydzielin, a jednocześnie chroni przed zadławieniem. Wzywając pomoc lekarską, dbamy o to, aby profesjonalna interwencja mogła zostać podjęta jak najszybciej, co jest szczególnie ważne w przypadku porażenia prądem, które może prowadzić do poważnych uszkodzeń wewnętrznych. W praktyce, osoby pracujące w środowisku przemysłowym powinny być przeszkolone w zakresie udzielania pierwszej pomocy, co jest zgodne z normą ISO 45001 dotyczącą zarządzania bezpieczeństwem i zdrowiem w pracy. Przykładowo, jeśli pracownik ulegnie porażeniu, niezwłocznie należy ocenić jego stan, a po umieszczeniu go w odpowiedniej pozycji, regularnie kontrolować jego oddech i reakcje, co jest kluczowe do oceny jego stanu przed przybyciem służb medycznych.

Pytanie 6

Jaką czynność zrealizuje polecenie COMPILE w kontekście programowania systemów mechatronicznych?

A. Konwersja kodu binarnego na format dziesiętny
B. Przesłanie programu do kontrolera
C. Pobranie programu z kontrolera
D. Przetłumaczenie programu na kod binarny
Polecenie COMPILE w środowisku do programowania urządzeń mechatronicznych polega na przetłumaczeniu programu na kod binarny, co jest kluczowym krokiem w procesie tworzenia aplikacji dla tych systemów. Tłumaczenie to jest niezbędne, ponieważ mikroprocesory i kontrolery w urządzeniach mechatronicznych operują na poziomie niskiego poziomu, gdzie jedynym zrozumiałym przez nie formacie jest kod binarny. Przykładem zastosowania tej procedury może być programowanie sterowników PLC, gdzie po napisaniu kodu w języku wysokiego poziomu, takim jak ladder diagram czy tekst strukturalny, następuje jego kompilacja do formatu binarnego, który jest następnie interpretowany przez sprzęt. Standardy takie jak IEC 61131-3 definiują różne języki programowania PLC, ale wszystkie wymagają etapu kompilacji. Poprawne przetłumaczenie programu gwarantuje, że algorytmy i logika działania będą realizowane zgodnie z założeniami projektowymi, co jest kluczowe dla funkcjonalności urządzeń mechatronicznych.

Pytanie 7

Prędkość ruchu tłoczyska w siłowniku hydraulicznym ma odwrotną zależność od

A. efektywności siłownika
B. powierzchni roboczej tłoka
C. wydajności siłownika
D. natężenia przepływu medium roboczego do siłownika
Prędkość tłoczyska siłownika hydraulicznego jest odwrotnie proporcjonalna do powierzchni czynnej tłoka, co wynika z podstawowych zasad hydrauliki. W przypadku siłowników hydraulicznych, prędkość tłoczyska (v) obliczana jest na podstawie natężenia przepływu (Q) oraz powierzchni tłoka (A) według wzoru v = Q/A. Gdy powierzchnia tłoka wzrasta, prędkość tłoczyska maleje dla stałego natężenia przepływu, co ilustruje odwrotną proporcjonalność. Praktycznie oznacza to, że w aplikacjach, gdzie wymagane jest szybkie ruch tłoczyska, projektanci siłowników często stosują mniejsze średnice tłoków, aby zwiększyć prędkość przy zachowaniu odpowiedniego ciśnienia. Dobrą praktyką w branży jest także uwzględnianie tego związku podczas doboru siłowników do konkretnych zastosowań, co wpływa na efektywność całego systemu hydraulicznego. Również w kontekście oszczędności energii, dobór odpowiedniej powierzchni tłoka pozwala na optymalizację pracy układu hydraulicznego.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Na rysunku przedstawiono

Ilustracja do pytania
A. regulator temperatury.
B. przekaźnik półprzewodnikowy.
C. sterownik PLC.
D. zasilacz impulsowy.
Ten zasilacz impulsowy, co go widzisz na zdjęciu, to naprawdę ważny element w różnych systemach elektronicznych. Widać, że ma oznaczenia napięcia wejściowego i wyjściowego, co jasno pokazuje, do czego służy – do konwersji napięcia. Takie zasilacze są stosowane w naprawdę wielu miejscach, jak na przykład w zasilaniu elektroniki, w systemach komunikacyjnych czy nawet w automatyce przemysłowej. Ich wydajność jest całkiem niezła, a do tego są małe, przez co zyskują przewagę nad tradycyjnymi zasilaczami liniowymi. Z doświadczenia mogę powiedzieć, że zasilacze impulsowe są efektywne, co znaczy, że mniej energii się marnuje i mniej ciepła produkują. W związku z tym, że teraz wszyscy chcą oszczędzać energię, zasilacze impulsowe stały się standardem w nowoczesnych rozwiązaniach elektronicznych. Fajnie też, że spełniają normy IEC i UL, co daje pewność, że są bezpieczne i niezawodne, co jest ważne w różnych branżach.

Pytanie 10

Aby chronić silnik przed wystąpieniem napięcia zasilającego po krótkim zgaśnięciu, należy użyć przekaźnika

A. nadprądowy zwłoczny
B. podnapięciowy zwłoczny
C. różnicowoprądowy
D. nadnapięciowy zwłoczny
Wybór innych typów przekaźników, takich jak nadnapięciowy zwłoczny, nadprądowy zwłoczny czy różnicowoprądowy, nie jest odpowiedni w kontekście zabezpieczania silnika przed pojawieniem się napięcia zasilania po krótkotrwałym zaniku. Przekaźnik nadnapięciowy zwłoczny jest zaprojektowany do wyłączania obwodu, gdy napięcie przekracza ustaloną wartość, co w przypadku zaniku napięcia nie zabezpiecza silnika, lecz może doprowadzić do niebezpiecznej sytuacji, gdy napięcie powraca. Nadprądowy zwłoczny z kolei ma na celu zabezpieczenie przed przeciążeniem, a nie przed zanikami napięcia, więc jego funkcjonalność w tym kontekście będzie niewystarczająca. Przekaźnik różnicowoprądowy wykrywa różnice w prądzie między przewodami roboczymi, chroniąc przed porażeniem elektrycznym, ale nie zareaguje na zmiany w napięciu zasilania. Wybór niewłaściwego przekaźnika może prowadzić do potencjalnych uszkodzeń silnika, a także stwarzać ryzyko dla osób pracujących w pobliżu. Dlatego istotne jest zrozumienie specyfiki działania różnych typów przekaźników, aby skutecznie zabezpieczyć urządzenia w warunkach zmienności napięcia zasilania.

Pytanie 11

W powyższym układzie stycznik K1 włącza się tylko wtedy, gdy przycisk S1 jest wciśnięty. Zwolnienie przycisku S1 nie wyłącza K1. Przyczyną błędnego działania układu jest

Ilustracja do pytania
A. błędne podłączenie cewki stycznika K1.
B. uszkodzony przycisk S1.
C. uszkodzony stycznik K1.
D. błędne podłączenie styku zwiernego K1.
Wybór tej odpowiedzi pokazuje, że zrozumiałeś, jak ważne jest odpowiednie podłączenie styku zwiernego K1. To naprawdę kluczowa rzecz dla działania całego układu. Kiedy mówimy o styczniku K1, to pamiętaj, że musi być on wyposażony w styk podtrzymujący. Dzięki temu, nawet jak zwolnisz przycisk S1, układ nadal działa. Tak to działa: styk zwierny K1 powinien być połączony równolegle z przyciskiem S1, a to zapewnia, że w momencie wciśnięcia przycisku, cewka stycznika jest zasilana. Po zwolnieniu przycisku styk zwierny przejmuje kontrolę, więc cewka nadal jest zasilana. W automatyce to popularne rozwiązanie, które sprawia, że obwody działają niezawodnie. Oczywiście, w sytuacjach awaryjnych musimy też pamiętać o normach bezpieczeństwa i stosować odpowiednie elementy, żeby wszystko działało jak należy. Jak widzisz, zastosowanie tej koncepcji w praktyce naprawdę wpływa na stabilność i zminimalizowanie błędów.

Pytanie 12

Silnik zębaty przedstawiono na rysunku

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Silnik zębaty, przedstawiony na rysunku D, jest kluczowym elementem stosowanym w wielu aplikacjach mechanicznych, gdzie wymagana jest precyzyjna kontrola napędu. Jego konstrukcja oparta na zębatych kołach pozwala na efektywne przekazywanie momentu obrotowego między różnymi komponentami. Zębate koła, które widzimy na rysunku, są fundamentalne dla działania tego typu silników, ponieważ umożliwiają synchronizację ruchu oraz redukcję luzów, co jest szczególnie istotne w aplikacjach wymagających wysokiej dokładności. W praktyce, silniki zębate znajdują zastosowanie w robotyce, automatyce przemysłowej oraz w pojazdach, gdzie ich zdolność do przenoszenia obciążeń w połączeniu z kompaktową budową sprawia, że są one niezastąpione. Dodatkowo, zgodnie z normami branżowymi, silniki zębate powinny być projektowane z uwzględnieniem parametrów takich jak trwałość, efektywność energetyczna oraz minimalizacja hałasu, co wpływa na ich wydajność i długowieczność.

Pytanie 13

Ile minimalnie 8 bitowych portów we/wy powinien posiadać mikrokontroler PIC wyposażony w szeregowy
8-bitowy przetwornik analogowo-cyfrowy oznaczony ADC0831, aby można było zrealizować układ mechatroniczny przedstawiony na rysunku?

Ilustracja do pytania
A. 3 porty.
B. 4 porty.
C. 5 portów.
D. 2 porty.
Wybór większej liczby portów we/wy, niż dwa, świadczy o pewnym nieporozumieniu dotyczącym zasad komunikacji z przetwornikiem ADC0831 oraz sterowaniem silnikiem krokowym. Przy uwzględnieniu, że ADC0831 przesyła dane szeregowo, wystarczy jeden port do odbioru 8-bitowego sygnału cyfrowego. Wiele osób może błędnie przyjąć, że każdy sygnał sterujący wymaga oddzielnego portu, co nie jest prawdą. Zastosowanie jednego portu wyjściowego do przesyłania kombinacji sygnałów sterujących jest powszechną praktyką, która znacznie upraszcza projektowanie systemów mechatronicznych. Możliwe jest również zaimplementowanie dodatkowych sygnałów kontrolnych w ramach jednego portu poprzez odpowiednie kodowanie, co pozwala na dalszą oszczędność zasobów. Często w inżynierii zbyt duża liczba portów prowadzi do złożoności systemu, co może negatywnie wpływać na jego niezawodność i koszt produkcji. Ponadto, w kontekście projektów automatyki i robotyki, efektywne zarządzanie portami we/wy jest kluczowe, aby uniknąć sytuacji, w której system staje się nieefektywny i trudny do debugowania. Z tego względu, założenie większej liczby portów, jak np. 3, 4 czy 5, jest nieuzasadnione i niezgodne z dobrymi praktykami w projektowaniu układów mechatronicznych.

Pytanie 14

Na którym rysunku przedstawiono muskuł pneumatyczny?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Muskuł pneumatyczny, znany również jako siłownik pneumatyczny, jest kluczowym elementem w wielu aplikacjach automatyki przemysłowej. Odpowiedź B jest poprawna, ponieważ przedstawia typowy siłownik pneumatyczny, który składa się z cylindra oraz tłoka. Działa on na zasadzie sprężania powietrza, co pozwala na uzyskanie dużych sił w stosunkowo kompaktowym wymiarze. Przykłady zastosowania muskułów pneumatycznych obejmują automatyzację procesów produkcyjnych, gdzie siłowniki te są używane do przesuwania, podnoszenia lub zaciskania obiektów. W przemyśle spożywczym, siłowniki pneumatyczne są często wykorzystywane do transportu produktów i materiałów. Warto zaznaczyć, że zgodnie z najlepszymi praktykami branżowymi, muskuły pneumatyczne powinny być dobrane zgodnie z wymaganiami aplikacji, takimi jak ciśnienie robocze, siła wymagająca do wykonania zadania oraz cykle pracy. Dodatkowo, regularne przeglądy i konserwacja tych urządzeń są kluczowe dla zapewnienia ich długotrwałej i niezawodnej pracy.

Pytanie 15

Przyłącze "T" zaworu hydraulicznego przedstawionego na rysunku należy podłączyć do

Ilustracja do pytania
A. zbiornika oleju.
B. siłownika jednostronnego działania.
C. siłownika dwustronnego działania.
D. pompy.
Odpowiedź 'zbiornik oleju' jest prawidłowa, ponieważ przyłącze 'T' w zaworach hydraulicznych pełni rolę przyłącza zwrotnego, które odprowadza olej z powrotem do zbiornika w sytuacjach, gdy układ nie wymaga jego dalszego ciśnienia. W standardowych układach hydraulicznych, gdy zawór znajduje się w pozycji neutralnej, olej, który nie jest używany do napędu siłowników, musi być odprowadzany, aby uniknąć nadmiernego ciśnienia w systemie. Dobrą praktyką inżynieryjną jest odpowiednie podłączenie tego przyłącza, aby zapewnić prawidłowy obieg oleju i bezpieczeństwo układu. Na przykład, w układach z siłownikami hydraulicznymi, które często przechodzą w stan neutralny, olej powinien być odprowadzany do zbiornika, aby zminimalizować ryzyko uszkodzenia komponentów hydraulicznych poprzez nadmierne ciśnienie. Przykładowo, w maszynach budowlanych, takich jak koparki czy podnośniki, odpowiednie podłączenie przyłącza T do zbiornika oleju jest kluczowe dla efektywnej pracy i bezpieczeństwa operacji.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Aby zachować odpowiedni poziom ciśnienia w systemach hydraulicznych, wykorzystuje się zawory

A. dławiące
B. redukujące
C. rozdzielające
D. odcinające
Zawory redukcyjne odgrywają kluczową rolę w zarządzaniu ciśnieniem w układach hydraulicznych. Ich głównym zadaniem jest obniżenie ciśnienia roboczego na określonym poziomie, co jest istotne w wielu zastosowaniach przemysłowych. Zawory te działają poprzez automatyczne regulowanie przepływu cieczy, co pozwala na utrzymanie stabilnych warunków pracy w układzie. Na przykład, w systemach hydraulicznych zasilających maszyny produkcyjne, zawory redukcyjne zapewniają, że ciśnienie nie przekracza wartości określonej przez producenta, co zapobiega uszkodzeniom i zwiększa bezpieczeństwo operacji. Dobre praktyki w branży hydraulicznej zalecają regularne sprawdzanie i konserwację zaworów redukcyjnych, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, zgodność z normami takimi jak ISO 4414 dotycząca bezpieczeństwa w hydraulice, podkreśla wagę stosowania właściwych zaworów w celu minimalizacji ryzyka awarii systemów hydraulicznych.

Pytanie 18

Podczas działania napędu zwrotnego z użyciem silnika prądu stałego zaobserwowano, że prędkość obrotowa silnika jest różna w obu kierunkach oraz że iskrzenie szczotek przy obrocie w jedną stronę jest znacznie większe niż przy obrocie w kierunku przeciwnym. Jakie kroki należy podjąć w celu naprawy silnika?

A. Ustawić szczotki w strefie neutralnej
B. Obtoczyć oraz przeszlifować komutator
C. Znormalizować nacisk szczotek
D. Zamienić łożyska
Wymiana łożysk nie rozwiąże problemu nierównej prędkości obrotowej oraz intensywnego iskrzenia szczotek. Łożyska odpowiadają za utrzymanie osi silnika w odpowiedniej pozycji i zmniejszenie tarcia, jednakże nie mają wpływu na działanie komutatora ani na kontakt szczotek z wirnikiem. Z kolei ujednolicanie nacisku szczotek, chociaż może wydawać się logicznym rozwiązaniem, nie adresuje bezpośrednio problemu iskrzenia, które jest wynikiem niewłaściwego ustawienia szczotek. Obtoczenie i przeszlifowanie komutatora mogą jedynie częściowo poprawić sytuację, ale nie zlikwidują źródła problemu, jakim jest niewłaściwe ustawienie szczotek. Ustawienie szczotek w strefie neutralnej jest nie tylko najlepszym sposobem na rozwiązanie zaobserwowanych problemów, ale także jest zgodne z praktykami stosowanymi w serwisie silników prądu stałego, co podkreśla znaczenie precyzyjnej diagnostyki oraz regulacji. Ostatecznie, te działania powinny być częścią regularnych przeglądów technicznych, aby zapewnić długotrwałą i efektywną pracę silnika.

Pytanie 19

Praska do zaciskania końcówek tulejkowych może być użyta do montażu końcówki przedstawionej na rysunku

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Praska do zaciskania końcówek tulejkowych to narzędzie kluczowe w procesie montażu połączeń przewodów elektrycznych. Odpowiedź C jest poprawna, ponieważ przedstawiona na rysunku końcówka jest tulejką z izolacją, co czyni ją idealną do użycia z prasą. Tulejki kablowe z izolacją stosuje się, aby zapewnić bezpieczne i trwałe połączenie, a ich zaciskanie przy użyciu pras zapewnia odpowiednią siłę i kontrolę, co jest zgodne z najlepszymi praktykami w elektrotechnice. Dzięki zastosowaniu tego narzędzia, użytkownik minimalizuje ryzyko uszkodzeń przewodów oraz zwiększa jakość połączenia. Ważne jest również, aby stosować odpowiednie tulejki do konkretnego przekroju przewodu, co zapewnia optymalne działanie instalacji. Dodanie smaru izolacyjnego lub zastosowanie komponentów zgodnych z normami IEC 60947-1 i IEC 60364 może dodatkowo poprawić bezpieczeństwo i efektywność elektrycznego połączenia.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Blok przedstawiony na rysunku realizuje funkcję logiczną

Ilustracja do pytania
A. AND
B. OR
C. NOR
D. NAND
Blok przedstawiony na rysunku realizuje funkcję logiczną AND, co można łatwo zauważyć po symbolu "&" umieszczonym wewnątrz bloku. Funkcja AND jest jedną z podstawowych funkcji logicznych stosowanych w elektronice cyfrowej oraz programowaniu. Działa na zasadzie, że jej wyjście będzie miało wartość prawda (1) tylko wtedy, gdy wszystkie podłączone wejścia mają wartość prawda (1). W praktyce funkcja ta jest często wykorzystywana w układach cyfrowych, takich jak bramki logiczne, gdzie umożliwia realizację złożonych operacji działania systemu. Na przykład, w systemach alarmowych, sygnał alarmowy może być aktywowany tylko wtedy, gdy wszystkie czujniki wykryją intruza. Warto zaznaczyć, że zgodnie z normami IEEE i innymi standardami branżowymi, użycie funkcji AND jest kluczowe w budowie niezawodnych układów logicznych, co czyni tę wiedzę niezwykle ważną w kontekście inżynierii elektronicznej.

Pytanie 26

Jaki rodzaj klucza należy zastosować do przykręcenia pokazanej na rysunku śruby?

Ilustracja do pytania
A. Nasadowy.
B. Imbusowy.
C. Torx.
D. Płaski.
Odpowiedź imbusowy jest prawidłowa, ponieważ śruba na zdjęciu wyposażona jest w sześciokątny otwór, charakterystyczny dla kluczy imbusowych. Klucze te, znane także jako klucze sześciokątne, są powszechnie stosowane w różnych dziedzinach, od mechaniki po meblarstwo. Dzięki swojej konstrukcji, klucze imbusowe umożliwiają łatwe i skuteczne przykręcanie oraz odkręcanie śrub nawet w trudno dostępnych miejscach. W praktyce, klucze te są niezwykle przydatne w montażu mebli, naprawie rowerów czy w budowie strukturalnej, gdzie potrzebna jest wysoka dokładność. Warto również zauważyć, że stosowanie kluczy imbusowych zgodnych z odpowiednimi normami (np. ISO 2936) zapewnia długowieczność zarówno narzędzia, jak i śrub, co przekłada się na efektywność pracy oraz bezpieczeństwo użytkowania. Pamiętaj, aby zawsze dobierać odpowiedni rozmiar klucza imbusowego do śruby, aby uniknąć uszkodzeń. Używanie nieodpowiedniego klucza może prowadzić do uszkodzenia otworu w głowie śruby, co może skutkować problemami przy jej późniejszym odkręcaniu.

Pytanie 27

Przedstawiony na rysunku schemat podłączenia dwóch niezależnych źródeł napięcia stałego jest stosowany do zasilania silnika prądu stałego

Ilustracja do pytania
A. bocznikowego.
B. szeregowego.
C. szeregowo-bocznikowego.
D. obcowzbudnego.
W przypadku silnika szeregowego, uzwojenie wzbudzenia jest połączone w szereg z uzwojeniem twornika, co oznacza, że prąd wzbudzenia zależy bezpośrednio od prądu płynącego przez silnik. W efekcie, zmiana obciążenia silnika wpływa na jego moment obrotowy, co nie jest zgodne z opisaną w pytaniu konfiguracją. Silnik bocznikowy z kolei charakteryzuje się tym, że uzwojenie wzbudzenia jest podłączone równolegle do uzwojenia twornika, co również nie spełnia warunków przedstawionego schematu, gdzie źródła napięcia są niezależne. Silnik szeregowo-bocznikowy łączy cechy obu wcześniej opisanych typów, ale również nie wykorzystuje niezależnego źródła zasilania dla uzwojenia wzbudzenia. Wszystkie te podejścia skupiają się na zasilaniu uzwojenia wzbudzenia z tego samego źródła, co może prowadzić do ograniczeń w kontroli momentu obrotowego oraz prędkości silnika. W praktyce, wybór odpowiedniego typu silnika powinien być oparty na szczegółowej analizie wymagań aplikacji, a stosowanie silników obcowzbudnych, które oferują bardziej elastyczne możliwości regulacji, jest zalecane w sytuacjach, gdzie precyzyjne sterowanie jest kluczowe.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Śrubę mikrometryczną do pomiaru głębokości otworów przedstawia rysunek

Ilustracja do pytania
A. B
B. A
C. C
D. D
Śruba mikrometryczna do pomiaru głębokości otworów jest niezwykle precyzyjnym narzędziem, które znajduje zastosowanie w różnych dziedzinach inżynieryjnych i technicznych. Odpowiedź B jest poprawna, ponieważ przedstawia narzędzie, które posiada płaską podstawę oraz wysuwany pręt pomiarowy, co jest kluczowe dla dokładnego pomiaru głębokości otworów. Tego rodzaju sprzęt jest wykorzystywany w procesach produkcyjnych oraz w laboratoriach, gdzie precyzja pomiarów ma ogromne znaczenie. Dzięki możliwości dokładnego pomiaru głębokości, śruba mikrometryczna pozwala na kontrolę wymiarów elementów, co jest istotne w kontekście zachowania tolerancji wymiarowej określonej w normach ISO. Przykładem zastosowania może być pomiar głębokości otworów w metalowych częściach maszyn, gdzie każdy milimetr ma znaczenie dla poprawności montażu i działania mechanizmów. Warto zaznaczyć, że posługiwanie się tym narzędziem wymaga nie tylko wiedzy teoretycznej, ale także praktycznych umiejętności, co czyni je niezbędnym w pracy technika czy inżyniera.

Pytanie 31

Na którym rysunku przedstawiono fotorezystor?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Fotorezystor jest elementem elektronicznym, którego rezystancja zmienia się w zależności od natężenia światła, co czyni go kluczowym komponentem wielu aplikacji związanych z optyką i automatyzacją. Rysunek oznaczony literą C przedstawia fotorezystor z typową czarną obudową, często z czerwonymi paskami, co jest charakterystyczne dla tego typu elementów. Fotorezystory znajdują zastosowanie w czujnikach światła, regulacji oświetlenia oraz w automatycznych systemach sterowania, takich jak lampy uliczne, które włączają się po zmroku. W praktyce, ich działanie opiera się na zjawisku fotoprzewodnictwa, gdzie absorpcja fotonów przez materiał półprzewodnikowy powoduje wzrost liczby nośników ładunku, co zmniejsza rezystancję. Wykorzystanie fotorezystorów w projektach DIY oraz w sprzęcie elektronicznym, takimi jak aparaty fotograficzne czy systemy alarmowe, pokazuje ich wszechstronność i znaczenie w nowoczesnych technologiach. Zrozumienie funkcji i zastosowań fotorezystorów jest kluczowe dla każdego inżyniera elektronika oraz projektanta systemów automatyki.

Pytanie 32

Przyczyną uszkodzenia regulatora jest błąd w obwodzie czujnika temperatury odniesienia. Kod błędu to

Nr błęduPrzyczynaŚrodek zaradczy
ErANiespełnione warunki samonastrajaniaNaciśnij dowolny przycisk. Sprawdź czy wartość mierzona jest mniejsza o 20% od wartości zadanej i czy nie zmienia się więcej niż 1% na minutę.
Er1Zwarcie czujnikaSprawdź i popraw podłączenie czujnika.
Er2Rozwarcie czujnikaSprawdź i popraw podłączenie czujnika.
Er3Błąd w obwodzie termoelementu - czujnika temperatury odniesieniaSprawdź i ewentualnie wymień czujnik.
A. Er3
B. Er2
C. Er1
D. ErA
Wybór odpowiedzi innej niż 'Er3' wskazuje na nieporozumienie dotyczące kodów błędów związanych z obwodem czujnika temperatury odniesienia. Obwody te są krytyczne dla prawidłowego funkcjonowania regulatorów, a ich uszkodzenie często prowadzi do nieprawidłowych odczytów temperatury. Kod 'Er2' nie odnosi się do tego konkretnego problemu, a jego zastosowanie w kontekście tego pytania jest błędne. Użytkownicy mogą mylnie przypuszczać, że inne kody odnoszą się do kwestii związanych z temperaturą, co może prowadzić do nieodpowiednich reakcji na błędy w systemie. Na przykład, kod 'Er1' mógłby być mylony z błędami w obwodzie zasilania, co jest zupełnie inną kwestią. Podobnie, 'ErA' nie ma standardowego odniesienia do uszkodzenia termoelementu i może być mylony z błędami systemowymi. Kluczowym błędem myślowym jest zakładanie, że jakiekolwiek odchylenie w pomiarach można zinterpretować jako ogólny problem z regulacją urządzenia. W rzeczywistości, każdy kod błędu, jak 'Er3', powinien być traktowany jako specyficzny i wymagać odrębnej analizy oraz działań naprawczych. Zrozumienie tej specyfiki jest niezbędne dla efektywnego zarządzania systemami automatyki.

Pytanie 33

Który z podanych czujników nie nadaje się do detekcji położenia stanowiska napełniania butelek przedstawionego na ilustracji?

Ilustracja do pytania
A. Indukcyjny.
B. Optyczny.
C. Pojemnościowy.
D. Magnetyczny.
Czujniki indukcyjne, pojemnościowe i optyczne są często stosowane w automatyzacji procesów, ale ich zastosowanie w kontekście detekcji położenia butelek na stanowisku napełniania może prowadzić do nieporozumień. Czujnik indukcyjny, który jest zaprojektowany do wykrywania obiektów metalowych, może okazać się efektywny w sytuacjach, gdy metalowe elementy są obecne, jednak w przypadku butelek wykonanych z plastiku lub szkła, jego użycie będzie nieadekwatne. Z kolei czujnik pojemnościowy, choć skuteczny w detekcji materiałów nieprzewodzących, może w niektórych sytuacjach być niewłaściwie skonfigurowany, co prowadzi do fałszywych alarmów lub braku reakcji. Optyczne czujniki, które wykorzystują technologię fotonową, mogą być również ograniczone przez warunki środowiskowe, takie jak zanieczyszczenia na obiekcie lub zmiana oświetlenia, co wpływa na ich zdolność do prawidłowego działania. Typowym błędem myślowym jest zakładanie, że każdy czujnik może być użyty w dowolnej aplikacji bez uwzględnienia specyfiki materiałów i warunków operacyjnych. W praktyce, skuteczność czujnika zależy od jego technologii oraz parametrów środowiskowych, w których jest zainstalowany, co jest kluczowe dla zapewnienia efektywności procesów przemysłowych.

Pytanie 34

Jaką wartość można zarejestrować korzystając z enkodera absolutnego jednoobrotowego?

A. Ciśnienie
B. Przesunięcie kątowe
C. Moment obrotowy
D. Przyspieszenie
Przyspieszenie, moment obrotowy oraz ciśnienie to wielkości, które nie są bezpośrednio mierzone przez enkodery absolutne jednoobrotowe, co może prowadzić do nieporozumień w kontekście ich zastosowań. Przyspieszenie odnosi się do zmiany prędkości obiektu w czasie i jest mierzonym parametrem, który można określić przy użyciu akcelerometrów, a nie enkoderów. Chociaż enkodery mogą być używane w systemach, które również mierzą przyspieszenie, same w sobie nie są w stanie tego dokonać. Moment obrotowy jest wielkością, która opisuje siłę działającą na obiekt w celu jego obrotu. Enkodery mogą dostarczać informacji o położeniu, ale ich funkcja nie obejmuje bezpośredniego pomiaru momentu obrotowego, który wymaga pomiaru siły oraz promienia działania. Z kolei ciśnienie jest parametrem fizycznym, mierzonym za pomocą czujników ciśnienia, a nie enkoderów. Typowe błędy myślowe w tym kontekście obejmują mylenie funkcji pomiarowych różnych urządzeń oraz niewłaściwe przypisanie ich do różnych zastosowań w automatyce. Kluczowym zrozumieniem jest to, że enkodery absolutne jednoobrotowe są projektowane z myślą o pomiarze kąta, a nie innych wielkości fizycznych, co jest fundamentalnym aspektem ich technologii i zastosowania.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Dobierz minimalny zestaw sterownika S7-200 do realizacji sterowania windą w budynku trzykondygnacyjnym. Wykorzystaj w tym celu opis elementów wejściowych/wyjściowych podłączonych do sterownika.

Elementy
wejściowe
jeden czujnik na każdej kondygnacji informujący o stanie drzwi zewnętrznych (otwarte/zamknięte)
jeden czujnik na każdej kondygnacji informujący o położeniu windy
jeden przycisk na każdej kondygnacji przywołujący windę
3 przyciski wewnątrz windy służące do wyboru kondygnacji
jeden przycisk wewnątrz windy informujący o awarii (AWARIA)
Elementy
wyjściowe
dwa styczniki załączające otwieranie i zamykanie drzwi
dwa styczniki uruchamiające jazdę kabiny na dół i jazdę kabiny do góry
A. S7-200 o 24 wejściach i 16 wyjściach
B. S7-200 o 14 wejściach i 10 wyjściach
C. S7-200 o 8 wejściach i 6 wyjściach
D. S7-200 o 6 wejściach i 4 wyjściach
Odpowiedź "S7-200 o 14 wejściach i 10 wyjściach" jest poprawna, ponieważ aby skutecznie zrealizować system sterowania windą w budynku trzykondygnacyjnym, należy uwzględnić liczbę niezbędnych wejść i wyjść. W przypadku takiego systemu potrzeba przynajmniej 13 wejść do monitorowania różnych czujników oraz 4 wyjścia do kontroli silników i sygnalizacji świetlnej. Sterownik S7-200 o 14 wejściach i 10 wyjściach zapewnia wystarczające zasoby, aby nie tylko zrealizować podstawowe funkcje, ale także pozostawia pewien zapas na przyszłe rozszerzenia lub dodatkowe czujniki. Praktyczne zastosowanie tego typu sterownika w budynkach wielokondygnacyjnych jest zgodne z normami automatyki budynkowej, które zalecają przy projektowaniu systemów zwracanie uwagi na elastyczność i możliwość rozbudowy. Warto również wspomnieć, że dobór odpowiednich komponentów jest kluczowy dla zapewnienia bezpieczeństwa użytkowników, co podkreśla znaczenie przestrzegania dobrych praktyk inżynieryjnych w projektowaniu systemów automatyki.

Pytanie 37

Proces osuszania polega na absorbowaniu wilgoci oraz oleju ze sprężonego powietrza przez środek osuszający

A. adsorpcyjny
B. absorcyjny
C. poprzez podgrzewanie
D. poprzez schładzanie
Wybór odpowiedzi 'przez ogrzewanie' odnosi się do innego typu procesów, gdzie ciepło jest wykorzystywane do zwiększenia zdolności powietrza do wchłaniania wilgoci. Ogrzewanie powietrza upraszcza jego właściwości, ale nie eliminuje wilgoci, a jedynie zmienia jej stan. Z kolei 'przez oziębianie' to metoda, która polega na obniżeniu temperatury powietrza, co skutkuje skraplaniem wilgoci, ale nie jest to proces osuszania na poziomie absorpcyjnym. Oziębianie może prowadzić do kondensacji pary wodnej, ale wymaga dodatkowych środków, by ta skondensowana woda została usunięta. Wreszcie, 'adsorpcyjne' odnosi się do procesu, w którym cząsteczki wody przylegają do powierzchni materiału osuszającego, co jest różne od absorpcji, gdzie woda jest wchłaniana do wnętrza materiału. Zrozumienie różnicy między tymi procesami jest kluczowe dla efektywnego projektowania systemów osuszających. Typowe błędy myślowe, które prowadzą do wyboru niewłaściwych odpowiedzi, obejmują mylenie terminologii oraz niedostateczne zrozumienie mechanizmów działania środków osuszających.

Pytanie 38

Jeśli na tłok siłownika o powierzchni S = 0,003 m2 działa ciśnienie czynnika wynoszące 2 MPa, to jaka jest siła działająca na tłok?

A. 9 kN
B. 12 kN
C. 6 kN
D. 2 kN
Wybór błędnej odpowiedzi często wynika z nieprawidłowego zastosowania wzoru na siłę wywieraną przez ciśnienie. Wiele osób może mylnie założyć, że siła jest równoznaczna z ciśnieniem, co prowadzi do niepoprawnych obliczeń. Na przykład, przy wyborze 2 kN, może to sugerować, że ktoś pomylił jednostki lub nie uwzględnił prawidłowej powierzchni tłoka. Z kolei wybór 12 kN może wynikać z błędnego pomnożenia ciśnienia przez powierzchnię, w sytuacji gdy dana osoba nie przeliczyła jednostek na pascale. Ważne jest, aby pamiętać, że ciśnienie to siła działająca na jednostkę powierzchni, a zatem do obliczenia całkowitej siły musimy pomnożyć ciśnienie przez odpowiednią powierzchnię. W przypadku ciśnienia 2 MPa, co odpowiada 2 * 10^6 Pa, oraz powierzchni 0,003 m², obliczenia prowadzą jednoznacznie do wyniku 6 kN. Typowe błędy myślowe przy takich zadaniach obejmują niedokładne przeliczenia jednostek, błędne zrozumienie zależności między ciśnieniem, siłą i powierzchnią oraz pomijanie istotnych danych w zadaniu. Kluczowe jest, aby podczas rozwiązywania problemów hydraulicznych stosować właściwe wzory i zachować ostrożność w przeliczaniu jednostek, co ma ogromne znaczenie w kontekście projektowania i eksploatacji systemów hydraulicznych.

Pytanie 39

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. oględzin
B. montażu
C. pomiarów
D. obróbki
Oględziny są pierwszym krokiem w ocenie stanu technicznego podzespołów mechanicznych, ponieważ pozwalają na wstępną identyfikację ewentualnych uszkodzeń, zużycia czy nieprawidłowości. W trakcie oględzin należy zwrócić uwagę na widoczne oznaki uszkodzeń, takie jak pęknięcia, wgniecenia, korozja czy nieszczelności. Dobrą praktyką jest stosowanie standardów takich jak ISO 9001, które podkreślają znaczenie systematycznego podejścia do oceny stanu technicznego. W praktyce inżynierskiej, oględziny są często wspierane narzędziami wizualnymi, takimi jak mikroskopy, kamery inspekcyjne czy oświetlenie UV, co umożliwia dokładniejsze zidentyfikowanie problemów. Na przykład, w przypadku oceny stanu łożysk, oględziny mogą ujawnić wyciek smaru lub oznaki przegrzania, co jest kluczowe dla dalszych działań, takich jak pomiary czy planowanie konserwacji.

Pytanie 40

Na której ilustracji przedstawiono prawidłowe zaciśnięcie końcówki przewodu w obszarze z izolacją?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 4.
C. Na ilustracji 2.
D. Na ilustracji 1.
Prawidłowe zaciśnięcie końcówki przewodu w obszarze z izolacją, przedstawione na ilustracji 4, jest kluczowe dla zapewnienia trwałego i bezpiecznego połączenia elektrycznego. Na tej ilustracji widać, że zacisk obejmuje zarówno izolację, jak i przewody, co jest zgodne z najlepszymi praktykami w branży. Takie podejście zapobiega odsłonięciu przewodów, co mogłoby prowadzić do zwarć lub uszkodzeń. Prawidłowe zaciśnięcie jest również zgodne z normami, takimi jak IEC 60947, które definiują wymagania dla urządzeń i elementów stosowanych w instalacjach elektrycznych. Prawidłowo wykonane połączenie gwarantuje nie tylko bezpieczeństwo, ale także efektywność działania instalacji. W praktyce, zapewnienie odpowiedniego zacisku może wpłynąć na żywotność urządzeń oraz zmniejszenie ryzyka awarii. Dlatego istotne jest, aby osoby zajmujące się instalacjami elektrycznymi miały świadomość tych standardów oraz umiejętność ich stosowania w codziennej pracy, co przyczynia się do ogólnego bezpieczeństwa i jakości instalacji elektrycznych.