Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 3 stycznia 2026 20:46
  • Data zakończenia: 3 stycznia 2026 21:03

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W trzech probówkach umieszczono roztwory: wodorotlenku sodu, chlorku sodu i kwasu octowego. W celu identyfikacji zbadano ich odczyn za pomocą uniwersalnego papierka wskaźnikowego, a następnie fenoloftaleiny. Barwy wskaźników w badanych roztworach przedstawiono w tabeli:

WskaźnikBarwa wskaźnika
próbówka nr 1próbówka nr 2próbówka nr 3
uniwersalny papierek wskaźnikowyżółtyczerwonyniebieski
fenoloftaleinabezbarwnybezbarwnymalinowa
A. Po zastosowaniu tylko fenoloftaleiny można stwierdzić, że w probówce nr 1 był roztwór chlorku sodu.
B. W probówce nr 2 znajdował się roztwór o pH powyżej 9.
C. W probówce nr 1 znajdował się roztwór o odczynie zasadowym.
D. Po zastosowaniu tylko uniwersalnego papierka wskaźnikowego można stwierdzić, że w probówce nr 3 był roztwór wodorotlenku sodu.
Próba zidentyfikowania substancji na podstawie tylko ogólnych kolorów wskaźników może prowadzić do poważnych nieporozumień. W przypadku roztworu wodorotlenku sodu, jak wskazuje poprawna odpowiedź, uniwersalny papier wskaźnikowy dostarcza wyraźnych informacji o pH, jednak w przypadku innych substancji, takich jak chlorek sodu czy kwas octowy, sytuacja jest znacznie bardziej skomplikowana. Chlorek sodu w roztworze nie wpływa na pH w sposób, który byłby widoczny za pomocą wskaźników pH, ponieważ jest to sól neutralna. Kwas octowy, będący słabym kwasem, również nie spowoduje odczuwalnego zmiany koloru wskaźnika w zasadowym środowisku, co jest często mylnie interpretowane. Błąd w rozumieniu zjawiska może prowadzić do fałszywych wniosków dotyczących obecności substancji w roztworach. W kontekście edukacyjnym, zrozumienie zasad działania wskaźników pH oraz ich ograniczeń jest kluczowe dla chemików i studentów chemii, aby uniknąć pułapek związanych z niewłaściwą interpretacją wyników. Dlatego istotne jest, aby zawsze stosować się do standardów analizy chemicznej i być świadomym ograniczeń używanych metod pomiarowych.

Pytanie 2

Na podstawie danych zawartych w tabeli wskaż, które opakowania zawierają produkt zgodny ze specyfikacją.

WŁAŚCIWOŚCINORMA KLASY A
wg specyfikacji produktu
OPAKOWANIE
123
POSTAĆBezbarwna ciecz, bez zanieczyszczeń.
Dopuszcza się niebieskawе zabаrwienie
i obecność skrystalizowanego osadu
Bezbarwna ciecz
Zawartość ługu sodowego
(NaOH), min, % masy
46,046,546,848,0
Węglan sodu (Na₂CO₃),
nie więcej niż, % masy
0,40,30,30,2
Chlorek sodu (NaCl),
nie więcej niż, % masy
0,0200,0150,0140,011
Chloran sodu (NaClO₃),
nie więcej niż, % masy
0,0070,0060,0050,002
Siarczan sodu (Na₂SO₄),
nie więcej niż, % masy
0,0400,0380,0350,029
Zawartość żelaza (Fe₂O₃),
max, WT. PPM
15151510
A. Tylko 1 i 2.
B. Tylko 3.
C. Żadne.
D. Wszystkie.
Odpowiedź "Wszystkie" jest jak najbardziej na miejscu! Wszystkie opakowania (1, 2 i 3) spełniają normy klasy A według wymagań produktu. Zawierają bezbarwną ciecz, która przeszła testy na substancje chemiczne. To ważne, bo każde z tych opakowań mieści się w granicach określonych w normach, co znaczy, że są zgodne z wymaganiami jakościowymi. Z mojego doświadczenia, normy klasy A są kluczowe w wielu branżach, szczególnie w chemii czy farmacji, gdzie jakość i bezpieczeństwo to podstawa. Dobrze jest też pamiętać, że trzymanie się norm w pakowaniu jest mega ważne, bo złe opakowanie może zaszkodzić produktowi. Dlatego każdy, kto pracuje w produkcji, powinien znać te normy i się ich trzymać, żeby zapewnić najwyższą jakość i bezpieczeństwo produktów.

Pytanie 3

Na ilustracji przedstawiono sprzęt stosowany do sączenia osadu

Ilustracja do pytania
A. pod zwiększonym ciśnieniem.
B. w podwyższonej temperaturze.
C. w stałej temperaturze.
D. pod zmniejszonym ciśnieniem.
Sączenie osadu w podwyższonej temperaturze jest kluczowym procesem w wielu branżach, takich jak przemysł chemiczny, farmaceutyczny czy przetwórstwo żywności. Wysoka temperatura wpływa na zwiększenie rozpuszczalności substancji oraz przyspiesza procesy chemiczne, co prowadzi do efektywniejszego oddzielania ciał stałych od cieczy. W praktyce, zastosowanie podwyższonej temperatury pozwala na zredukowanie czasu niezbędnego do osiągnięcia pożądanej czystości osadu. Na przykład, w procesach filtracji w przemyśle spożywczym, gdzie wytrącanie osadu może wiązać się z obecnością składników odżywczych, podwyższenie temperatury umożliwia szybkie uzyskanie klarownych roztworów, co jest zgodne z normami jakościowymi. Dodatkowo, podwyższona temperatura może również zmniejszyć lepkość cieczy, co sprzyja lepszemu przepływowi i skuteczności procesu filtracji.

Pytanie 4

Mając wagę laboratoryjną z dokładnością pomiaru 10 mg, nie da się wykonać odważki o masie

A. 13 g
B. 0,013 g
C. 1300 mg
D. 130 mg
Odpowiedzi takie jak 1300 mg, 13 g i 130 mg są niepoprawne z kilku powodów. Z perspektywy technicznej, każda z tych mas jest znacznie większa niż minimalna granica dokładności wagi wynosząca 10 mg, co oznacza, że można je zmierzyć z poziomem precyzji, który zapewnia ta waga. Jednakże, nie uwzględniają one kluczowego aspektu związanego z wymaganiami dotyczących dokładności przy ważeniu mniejszych mas. Błąd w myśleniu polega na nieodróżnieniu granicy dokładności od możliwości pomiarowych. Waga laboratoryjna o dokładności 10 mg jest idealna do ważenia substancji o masach powyżej tej wartości, ale nie może być wykorzystywana do pomiarów, które są poniżej tej granicy, ponieważ wyniki mogą być nieprecyzyjne i niepewne. Na przykład, przygotowując roztwory o dużej dokładności, jak w przypadku chemii analitycznej, musimy wystrzegać się używania wag, które nie mogą dokładnie zmierzyć masy próbki. W laboratoriach często korzysta się z wag o wyższej dokładności, takich jak wagi analityczne, które pozwalają na ważenie do 0,1 mg, co zwiększa zakres precyzyjnego ważenia. Ponadto, standardy laboratoryjne, takie jak ISO, podkreślają znaczenie stosowania odpowiednich narzędzi pomiarowych, aby zapewnić wiarygodność wyników eksperymentów i analiz. Dlatego istotne jest, aby mieć świadomość ograniczeń wag i stosować je zgodnie z ich parametrami technicznymi.

Pytanie 5

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 20 cm3
B. 25 cm3
C. 10 cm3
D. 50 cm3
W przypadku błędnych odpowiedzi, można zauważyć typowe nieporozumienia związane z obliczeniami stężenia i objętości. Często osoby udzielające niewłaściwych odpowiedzi mylą pojęcia stężenia i objętości, co prowadzi do błędnych wniosków. Na przykład, 25 cm3 sugeruje, że wzięto pod uwagę większą objętość niż wymagana do osiągnięcia zamierzonego stężenia. W rzeczywistości, aby uzyskać roztwór o stężeniu 0,4 mol/dm3, trzeba skupić się na ilości moli NaOH potrzebnych w 50 cm3 roztworu, a to wymaga znajomości zależności pomiędzy stężeniem, objętością i ilością moli. Ponadto, 50 cm3 na pewno nie jest poprawną odpowiedzią, ponieważ oznaczałoby to, że cała objętość roztworu o stężeniu 1 mol/dm3 zostałaby użyta bez jakiejkolwiek modyfikacji stężenia, co jest sprzeczne z założeniem problemu. Dlatego kluczowe jest zrozumienie zasad rozcieńczania roztworów, aby uniknąć takich błędów. W praktyce laboratorium chemicznego, nieumiejętność obliczenia odpowiedniej objętości roztworu może prowadzić do niepoprawnych wyników eksperymentów oraz marnotrawienia materiałów chemicznych.

Pytanie 6

Na podstawie danych zawartych w tabeli określ, do oznaczania którego parametru próbka musi być utrwalona w niskim pH.

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h
A. BZT.
B. Barwy.
C. Azotu azotanowego(V).
D. Fosforanów ogólnych.
Poprawna odpowiedź to fosforany ogólne, ponieważ zgodnie z metodyką analizy, próbki wody wymagają zakwaszenia w celu wiązania i stabilizacji fosforanów. Badania wykazały, że niskie pH, osiągane poprzez dodanie kwasu siarkowego(VI), minimalizuje straty fosforanów w wyniku ich adsorpcji na cząstkach stałych oraz ich konwersji do form, które są trudniejsze do zmierzenia. W praktyce, do oznaczania fosforanów ogólnych często stosuje się metody kolorimetryczne, które opierają się na reakcji fosforanów z odczynnikami w kwasowym środowisku. Standardy analityczne, takie jak metody opisane przez APHA (American Public Health Association), podkreślają znaczenie odpowiedniego przygotowania próbki w niskim pH, aby zapewnić rzetelność wyników. Ponadto, ustalenie odpowiednich warunków przechowywania i transportu próbek, w tym ich zakwaszenia, jest kluczowe w monitorowaniu jakości wód i ochrony zasobów wodnych. Właściwe metody analizy fosforanów wspierają zarządzanie ekosystemami wodnymi oraz podejmowanie decyzji dotyczących ochrony środowiska.

Pytanie 7

Korzystając z wykresu określ, której substancji można rozpuścić najwięcej w temperaturze 30°C.

Ilustracja do pytania
A. Chlorku sodu.
B. Azotanu(V) sodu.
C. Azotanu(V) potasu.
D. Chlorku potasu.
Analizując wykres rozpuszczalności substancji w temperaturze 30°C, można zauważyć, że azotan(V) sodu (NaNO3) ma najwyższą rozpuszczalność w porównaniu do innych wymienionych związków chemicznych. Jego zdolność do rozpuszczania się w wodzie jest szczególnie ważna w kontekście aplikacji w przemyśle chemicznym oraz w laboratoriach, gdzie często wykorzystuje się go jako reagent w różnych reakcjach chemicznych. Azotan(V) sodu jest także stosowany w produkcji nawozów, a jego wysoką rozpuszczalność można wykorzystać przy nawadnianiu roślin, co ma kluczowe znaczenie w rolnictwie. Dobór odpowiednich substancji chemicznych do fertilizacji oraz ich rozpuszczalność w konkretnych temperaturach jest zgodny z dobrymi praktykami branżowymi, pozwalając na optymalne wykorzystanie zasobów. Ponadto, znajomość rozpuszczalności substancji w różnych temperaturach jest istotna w kontekście procesów krystalizacji, co może mieć znaczenie dla produkcji substancji farmaceutycznych oraz w procesach syntezy chemicznej.

Pytanie 8

W karcie charakterystyki chemikaliów znajduje się informacja o przechowywaniu dichromianu(VI) potasu: .. powinien być przechowywany w odpowiednio oznakowanych, szczelnie zamkniętych pojemnikach, w chłodnym, suchym i dobrze wentylowanym magazynie, który posiada instalację elektryczną i wentylacyjną. Z tego opisu wynika, że ten chemikal może być przechowywany

A. w workach papierowych umieszczonych w wentylowanym magazynie
B. w drewnianych skrzyniach umieszczonych w wentylowanym pomieszczeniu
C. w workach jutowych umieszczonych w wentylowanym pomieszczeniu
D. w szczelnie zamkniętych słoikach, umieszczonych w wentylowanym pomieszczeniu
Odpowiedź wskazująca na magazynowanie dichromianu(VI) potasu w szczelnie zamkniętych słoikach w wentylowanym pomieszczeniu jest poprawna, ponieważ spełnia wszystkie wymagania określone w karcie charakterystyki substancji chemicznych. Przechowywanie substancji chemicznych w odpowiednich opakowaniach jest kluczowe dla zapewnienia ich stabilności oraz minimalizacji ryzyka kontaktu z czynnikami zewnętrznymi. Szczelne zamknięcie słoików zapobiega uwolnieniu substancji do atmosfery oraz chroni je przed wilgocią, co jest istotne w kontekście ich właściwości chemicznych. Ponadto, zapewnienie odpowiedniej wentylacji w pomieszczeniu magazynowym jest niezbędne dla redukcji potencjalnych zagrożeń związanych z kumulacją par lub oparów. W praktyce, przechowywanie substancji w takich warunkach jest zgodne z zasadami GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów), który zaleca stosowanie odpowiednich środków ostrożności przy składowaniu substancji niebezpiecznych, a także przestrzeganie lokalnych regulacji dotyczących składowania chemikaliów. Przykładowo, w laboratoriach chemicznych często stosuje się podobne procedury do zapewnienia bezpieczeństwa i ochrony środowiska.

Pytanie 9

Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu, należy odważyć

MNaOH = 40g / mol
A. 25,0 g stałego NaOH.
B. 2,00 g stałego NaOH.
C. 2,50 g stałego NaOH.
D. 0,05 g stałego NaOH.
Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu (NaOH), konieczne jest zrozumienie podstawowych zasad obliczania masy substancji chemicznych. W przypadku NaOH, jego masa molowa wynosi 40 g/mol. Przygotowując roztwór o stężeniu 0,2 mola w 250 cm3, obliczamy ilość moli, co daje nam 0,05 mola NaOH (0,2 mol/l * 0,25 l). Następnie, aby obliczyć potrzebną masę, stosujemy wzór: masa = liczba moli * masa molowa. Czyli, 0,05 mola * 40 g/mol = 2 g NaOH. W praktyce, takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma dużą wagę. Używając tej wiedzy, można z sukcesem przygotowywać różnorodne roztwory, co jest istotne w wielu dziedzinach nauki i przemysłu, takich jak chemia analityczna, synergia materiałów czy wytwarzanie farmaceutyków. Zrozumienie tych podstawowych zasad pozwoli na bardziej efektywne i bezpieczne przeprowadzanie eksperymentów chemicznych.

Pytanie 10

W laboratoriach roztwór potasu dichromianu(VI) w stężonym kwasie siarkowym(VI) wykorzystuje się do

A. wytrącania trudno rozpuszczalnych soli w wodzie
B. czyszczenia szkła laboratoryjnego
C. roztwarzania różnych stopów
D. odkamieniania urządzeń wodnych
Roztwór dichromianu(VI) potasu w stężonym kwasie siarkowym(VI) jest powszechnie stosowany w laboratoriach do mycia szkła laboratoryjnego, ponieważ jego właściwości chemiczne umożliwiają skuteczne usuwanie zanieczyszczeń organicznych oraz pozostałości po reakcjach chemicznych. Dichromian(VI) potasu działa jako silny utleniacz, co sprawia, że jest efektywny w eliminowaniu resztek organicznych, które mogą pozostać na powierzchni szkła. Praktyczne zastosowanie tego roztworu obejmuje czyszczenie probówek, kolb, oraz innych naczyń używanych w chemii analitycznej i syntetycznej. Ze względu na jego wysoką skuteczność, często jest stosowany przed przeprowadzaniem eksperymentów, aby zapewnić, że nie ma kontaminacji, która mogłaby wpłynąć na wyniki. W branży laboratoryjnej przestrzeganie standardów czystości i użycie odpowiednich reagentów jest kluczowe dla uzyskania wiarygodnych wyników, a roztwór dichromianu(VI) potasu w tym kontekście odgrywa istotną rolę. Ponadto, należy pamiętać o bezpieczeństwie pracy z tymi substancjami, ponieważ są one toksyczne i wymagają odpowiednich środków ochrony osobistej.

Pytanie 11

Roztwory o ściśle określonym stężeniu, używane w analizach miareczkowych, nazywamy

A. roztworami koloidowymi
B. roztworami niejednorodnymi
C. roztworami nasyconymi
D. roztworami mianowanymi
Roztwory mianowane, znane również jako roztwory o dokładnie znanym stężeniu, są kluczowym elementem w analizie miareczkowej, ponieważ umożliwiają precyzyjne pomiary, co jest niezbędne do określenia stężenia substancji w badanym roztworze. W praktyce laboratoryjnej roztwory mianowane są przygotowywane z wysoką starannością, często z wykorzystaniem substancji o czystości analitycznej. Na przykład, roztwór kwasu solnego o stężeniu 0,1 mol/l może być użyty do miareczkowania zasadowych roztworów, co pozwala na dokładne określenie ich stężenia. Stosowanie roztworów mianowanych jest zgodne z dobrymi praktykami laboratoryjnymi, które wymagają regularnego sprawdzania i kalibracji sprzętu. Warto również zauważyć, że roztwory te muszą być przechowywane w odpowiednich warunkach, aby uniknąć zmian stężenia spowodowanych parowaniem czy reakcjami chemicznymi. To podkreśla znaczenie precyzji i staranności w przygotowywaniu roztworów mianowanych, które są fundamentem wielu analiz chemicznych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Sporządzono 250 cm3 roztworu glicerolu o gęstości 1,05 g/cm3 w temperaturze 20°C. Korzystając z danych zamieszczonych w tabeli, określ stężenie procentowe sporządzonego roztworu glicerolu.

Glicerolu [%]10%20%30%50%
d20 [g/dm3]1023,701048,401073,951127,20
A. 20%
B. 10%
C. 30%
D. 40%
Stężenie procentowe roztworu glicerolu wynosi 20%, co jest zgodne z danymi dotyczącymi gęstości roztworów. Gęstość sporządzonego roztworu (1,05 g/cm3) jest bliska gęstości 20% roztworu glicerolu, wynoszącej 1,048 g/cm3. W praktyce, obliczanie stężeń procentowych jest kluczowe w chemii oraz w przemyśle farmaceutycznym i spożywczym, gdzie precyzyjne przygotowanie roztworów ma istotne znaczenie. W przypadku glicerolu, który jest powszechnie stosowany jako środek nawilżający i konserwujący, znajomość jego stężenia pozwala na odpowiednie dostosowanie formulacji produktów. Warto także pamiętać, że gęstość roztworów zmienia się w zależności od temperatury i stężenia, co powinno być brane pod uwagę przy przeprowadzaniu eksperymentów i kalkulacji. Używanie tabel gęstości oraz znajomość zasad przygotowywania roztworów są podstawowymi umiejętnościami, które powinien posiadać każdy chemik i technik laboratoryjny.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Substancje, które wykorzystuje się do ustalania miana roztworu, to

A. wtórne
B. robocze
C. podstawowe
D. miarowe
Wiele osób myli substancje robocze, wtórne i miarowe z substancjami podstawowymi, co może prowadzić do różnych nieporozumień przy ustalaniu miana roztworu. Substancje robocze to zazwyczaj roztwory, które przygotowujemy w laboratorium i ich jakość oraz stężenie mogą być różne. Użycie takich substancji może prowadzić do błędów w pomiarze, bo nie zawsze mamy pewność, że są one dokładne i stabilne. Substancje wtórne powstają zazwyczaj w procesie syntezy chemicznej lub są pochodnymi substancji podstawowych, więc ich stężenie nie jest tak precyzyjnie określone. Z kolei substancje miarowe, mimo że też używamy ich do pomiarów, nie mają takich samych właściwości jak substancje podstawowe, co może też prowadzić do błędnych wyników. To, co często mylimy, to założenie, że każda substancja w laboratorium jest substancją podstawową, co jest błędnym podejściem do kalibracji i oceny wyników. Żeby mieć wiarygodne i powtarzalne wyniki w analizach chemicznych, musimy naprawdę zrozumieć różnice między tymi substancjami oraz ich zastosowanie w praktyce laboratoryjnej.

Pytanie 16

Jeżeli partia towaru składa się z 10 dużych opakowań, wtedy z jednego opakowania pobiera się kilka próbek, które następnie łączy, uzyskując próbkę

A. jednostkową
B. średnią
C. laboratoryjną
D. pierwotną
Odpowiedź "jednostkową" jest prawidłowa, ponieważ w kontekście pobierania próbek z dużych opakowań, próbka jednostkowa odnosi się do pojedynczej próbki pobranej z konkretnego opakowania. W przypadku partii składającej się z 10 dużych opakowań, każda próbka jednostkowa jest reprezentatywna dla danego opakowania. Zbieranie próbek jednostkowych jest kluczowe w kontroli jakości, ponieważ pozwala na ocenę jednorodności i zgodności wyrobów z określonymi standardami. Przykładem zastosowania tej praktyki jest przemysł spożywczy, gdzie próbki jednostkowe są pobierane z różnych partii, aby sprawdzić ich jakość i bezpieczeństwo. Standardy takie jak ISO 2859-1 dotyczące pobierania próbek oraz normy branżowe zapewniają, że proces ten jest przeprowadzany zgodnie z zasadami statystycznymi, co zwiększa wiarygodność wyników.

Pytanie 17

Aby przygotować mianowany roztwór KMnO4, należy odważyć wysuszone Na2C2O4 o masie zbliżonej do 250 mg, z dokładnością wynoszącą 1 mg. Jaką masę powinna mieć prawidłowo przygotowana odważka?

A. 0,215 g
B. 0,251 g
C. 2,510 g
D. 0,025 g
Jak widzę, zrobiłeś błąd przy odważaniu Na2C2O4. Jeśli twoja odpowiedź znacznie odbiega od 0,251 g, to znaczy, że coś poszło nie tak. Na przykład, jeśli wskazałeś 2,510 g, to jest to zła odpowiedź, bo to prawie 10 razy więcej niż potrzeba. To może wynikać z nieprawidłowego przeliczenia jednostek lub nieznajomości masy molowej. Odpowiedzi takie jak 0,215 g czy 0,025 g również są za małe, co sugeruje, że nie wiesz, że potrzebujesz masy w okolicach 250 mg. Pamiętaj, ważenie reagentów w laboratorium jest super ważne, żeby wyniki były dokładne. Właściwe użycie wagi analitycznej i znajomość procedur ważenia to podstawa. Jak nie znasz jednostek i nie umiesz ich przeliczać, możesz popełnić poważne błędy. To bardzo istotne, żeby zrozumieć te zasady, bo błędy pomiarowe mogą zaważyć na całym eksperymencie.

Pytanie 18

Z analizy wykresu wynika, że substancją o najniższej rozpuszczalności w wodzie w temperaturze 100°C jest

A. sól kamienna
B. saletra potasowa
C. cukier
D. siarczan(VI) miedzi(II)
Cukier, siarczan(VI) miedzi(II) i saletra potasowa to substancje, które w sumie dobrze się rozpuszczają w wodzie, ale nie są odpowiedzią na pytanie, której substancji rozpuszczalność jest najsłabsza. Cukier, czyli sacharoza, jest znany z tego, że łatwo się rozpuszcza – w 100°C potrafi się rozpuścić nawet do 2000 g/l, co naprawdę przewyższa sól kamienną. Siarczan(VI) miedzi(II) ma też dobrą rozpuszczalność, bo przy 20°C dochodzi do około 70 g/l, więc również nie pasuje do tego pytania. Saletra potasowa, czyli azotan potasu, rozpuszcza się w wodzie do około 350 g/l przy 20°C. Czasami ludzie mylą, co to znaczy, że coś dobrze się rozpuszcza, bo na przykład myślą, że jak cukier się łatwo rozpuszcza w herbacie, to musi być słabiej rozpuszczalny. W rzeczywistości jednak, żeby zrozumieć rozpuszczalność substancji, warto sięgnąć po konkretne dane naukowe i zrozumieć, jakie właściwości chemiczne decydują o ich zachowaniu w roztworach.

Pytanie 19

Z uwagi na bezpieczeństwo pracy, ciecze żrące powinny być podgrzewane w łaźniach

A. olejowych
B. powietrznych
C. wodnych
D. piaskowych
Ogrzewanie cieczy żrących na łaźniach piaskowych to dobra opcja, bo piasek świetnie izoluje i rozprowadza ciepło. Dzięki temu mamy stabilne warunki, co jest bardzo ważne, zwłaszcza przy substancjach, które mogą się 'dziwnie' zachowywać, gdy temperatura szybko się zmienia. W praktyce użycie łaźni piaskowych zmniejsza ryzyko przegrzewania, co jest super istotne, bo może prowadzić do różnych nieprzyjemnych sytuacji, jak dekompozycja czy toksyczne opary. Piasek nie tylko grzeje, ale i chroni operatora. W laboratoriach chemicznych oraz w różnych branżach, gdzie obsługuje się cieczy żrące, przestrzeganie zasad BHP i stosowanie odpowiednich metod ogrzewania jest kluczowe, aby zapewnić bezpieczne warunki pracy i ochronić zdrowie. To są sprawy, które powinny być zawsze na pierwszym miejscu, a dokumenty branżowe mocno to podkreślają.

Pytanie 20

Materiały wykorzystywane w laboratoriach, mogące prowadzić do powstawania mieszanin wybuchowych, powinny być przechowywane

A. w różnych punktach laboratorium
B. w izolowanych pomieszczeniach magazynów ogólnych
C. w specjalnie wydzielonych piwnicach murowanych
D. na otwartym powietrzu pod dachem
Materiały stosowane w laboratoriach, które mogą tworzyć mieszaniny wybuchowe, należy przechowywać w izolowanych pomieszczeniach magazynów ogólnych ze względu na ryzyko ich niekontrolowanej reakcji, co może prowadzić do poważnych zagrożeń dla zdrowia i bezpieczeństwa. Izolacja pomieszczeń magazynowych pozwala na ograniczenie rozprzestrzeniania się ewentualnych wybuchów oraz na skuteczne zarządzanie wentylacją i monitoringiem. Przykładem mogą być laboratoria chemiczne, gdzie substancje takie jak rozpuszczalniki organiczne, materiały łatwopalne czy reagenty chemiczne muszą być przechowywane w wyspecjalizowanych pomieszczeniach, które są zgodne z przepisami BHP oraz normami takimi jak NFPA (National Fire Protection Association) czy OSHA (Occupational Safety and Health Administration). Dobre praktyki obejmują również regularne kontrole i audyty stanu magazynów, co pozwala na wczesne wykrywanie potencjalnych zagrożeń oraz zapewnienie odpowiednich środków ochrony, takich jak gaśnice i systemy alarmowe.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Na opakowaniu którego odczynnika powinien znaleźć się piktogram przedstawiony na ilustracji?

Ilustracja do pytania
A. Chlorku sodu.
B. Glukozy.
C. Stearynianu sodu.
D. Wodorotlenku sodu.
Wybór błędnej odpowiedzi może wynikać z nieporozumienia dotyczącego właściwości chemicznych substancji oraz ich oznakowania. Chlorek sodu, będący powszechnie znaną solą, nie jest substancją żrącą, dlatego nie wymaga stosowania piktogramu wskazującego na substancje niebezpieczne. Podobnie, stearynian sodu oraz glukoza są substancjami, które nie wykazują agresywnych właściwości chemicznych i nie stwarzają ryzyka dla użytkowników, co sprawia, że nie powinny być oznaczane symbolem substancji żrących. Wiele osób myli właściwości chemiczne na podstawie ogólnych informacji o substancjach, co prowadzi do błędnych wniosków. Zrozumienie kategorii substancji chemicznych oraz ich potencjalnych zagrożeń jest kluczowe w kontekście bezpieczeństwa, szczególnie w laboratoriach oraz środowisku przemysłowym. Oznakowanie substancji chemicznych jest regulowane przez międzynarodowe standardy bezpieczeństwa, takie jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów). Dlatego ważne jest, aby znać zasady dotyczące oznaczeń oraz klasyfikacji substancji, co pozwoli uniknąć pomyłek i zapewni odpowiednie środki ostrożności w pracy z różnorodnymi substancjami chemicznymi.

Pytanie 23

Opis w ramce przedstawia sposób oczyszczania substancji poprzez

Próbke substancji stałej należy umieścić w kolbie kulistej, zaopatrzonej w chłodnicę zwrotną, dodać rozpuszczalnika - etanolu i delikatnie ogrzewać do wrzenia. Po lekkim ostudzeniu dodać do roztworu niewielką ilość węgla aktywnego, zagotować i przesączyć na gorąco. Przesącz pozostawić do ostygnięcia, a wydzielony osad odsączyć pod zmniejszonym ciśnieniem, przemyć niewielką ilością rozpuszczalnika, przenieść na szalkę, pozostawić do wyschnięcia, a następnie zważyć.
A. ekstrakcję.
B. sublimację.
C. krystalizację.
D. destylację.
Krystalizacja jest kluczowym procesem w chemii, który polega na separacji substancji w postaci czystych kryształów z roztworu. Opisany proces obejmuje rozpuszczenie substancji w odpowiednim rozpuszczalniku, co ma na celu uzyskanie jednorodnej cieczy. Następnie, poprzez ogrzewanie do wrzenia, zwiększa się rozpuszczalność substancji, co pozwala na rozpuszczenie większej ilości materiału. Po schłodzeniu roztworu, rozpuszczalność substancji maleje, co prowadzi do wykrystalizowania się czystych kryształów. W tym kontekście dodanie węgla aktywnego jest powszechną praktyką w celu eliminacji zanieczyszczeń, co zwiększa czystość końcowego produktu. Chłodnica zwrotna dodatkowo zabezpiecza przed utratą rozpuszczalnika, co jest istotne w kontekście zrównoważonego wykorzystania zasobów. Przykłady zastosowania krystalizacji obejmują przemysł farmaceutyczny do uzyskiwania czystych substancji czynnych, a także produkcję soli i innych związków chemicznych. Proces ten jest zgodny z dobrymi praktykami laboratoryjnymi, co czyni go niezastąpionym w wielu dziedzinach chemii i inżynierii chemicznej.

Pytanie 24

Odczynnik, który w specyficznych warunkach reaguje wyłącznie z danym jonem, umożliwiając tym samym jego identyfikację w mieszance, to odczynnik

A. specyficzny
B. charakterystyczny
C. indywidualny
D. selektywny
Odczynnik specyficzny to taki, który reaguje z określonym jonem w danej mieszaninie, co pozwala na jego wykrycie i analizę. Oznacza to, że w warunkach laboratoryjnych, odczynnik ten jest w stanie wyizolować reakcję tylko dla jednego jonu, unikając interakcji z innymi składnikami. Przykładem może być zastosowanie odczynnika specyficznego do wykrywania jonów srebra w roztworach, gdzie używany jest tiocyjanian potasu, który reaguje z srebrem, tworząc charakterystyczny kompleks. Tego typu odczynniki są kluczowe w analizie chemicznej, gdyż umożliwiają precyzyjne pomiary i wykrywanie substancji w skomplikowanych mieszaninach. W laboratoriach często stosuje się różne metody analityczne, takie jak spektroskopia czy chromatografia, które wymagają użycia odczynników o wysokiej specyfice, aby wyniki były wiarygodne. Specyficzność odczynnika jest zgodna z dobrą praktyką laboratoryjną i standardami jakości, co jest istotne w kontekście zapewnienia dokładności wyników analizy.

Pytanie 25

Jakim kolorem oznacza się instalację gazową w laboratorium analitycznym?

A. niebieskim
B. czerwonym
C. żółtym
D. zielonym
Zastosowanie innych kolorów do oznaczania instalacji gazowych, takich jak czerwony, zielony czy niebieski, może prowadzić do poważnych pomyłek i zagrożeń w laboratoriach analitycznych. Kolor czerwony często utożsamiany jest z oznaczeniami alarmowymi lub wskazującymi na substancje wybuchowe, co może powodować nieporozumienia, gdy zostanie użyty do oznaczenia gazów. Zielony z kolei jest często stosowany do oznaczania instalacji związanych z mediami, które są bezpieczne lub neutralne, co również nie oddaje właściwej klasyfikacji gazów. Użycie niebieskiego, który przeważnie odnosi się do instalacji wodociągowych, może spowodować zafałszowanie informacji i nieporozumienia w zespole. Dlatego istotne jest, aby unikać błędów w oznaczeniach, które mogą prowadzić do niebezpiecznych sytuacji. Kluczowym błędem myślowym w tym kontekście jest niedostateczne zrozumienie funkcji kolorów w systemie oznaczeń, co może być skutkiem braku znajomości norm i standardów branżowych. Każdy kolor ma swoje konkretne znaczenie, a ich mylne użycie może prowadzić do sytuacji awaryjnych. Z tego względu, dla uzyskania wysokich standardów bezpieczeństwa, istotne jest przestrzeganie ustalonych zasad znakowania i stosowanie koloru żółtego w tych kontekstach.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Przedstawiony na rysunku zestaw służy do destylacji

Ilustracja do pytania
A. frakcjonowanej.
B. pod zmniejszonym ciśnieniem.
C. prostej.
D. z parą wodną.
Destylacja frakcjonowana polega na oddzielaniu składników mieszaniny na podstawie różnic w temperaturach wrzenia, lecz nie jest stosowana w warunkach próżniowych. Zastosowanie standardowej kolumny frakcjonacyjnej wymaga wysokich temperatur, co może prowadzić do degradacji termolabilnych substancji. Destylacja z parą wodną jest inną metodą, której używa się do oddzielania substancji, które mają wysoką temperaturę wrzenia, ale również nie jest to proces związany z obniżonym ciśnieniem. W rzeczywistości, w przypadku niektórych substancji, para wodna może prowadzić do ich hydrolizy lub zmiany struktury chemicznej, co czyni tę metodę mniej efektywną w porównaniu do destylacji pod zmniejszonym ciśnieniem. Z kolei destylacja prosta jest metodą, która również nie wykorzystuje podciśnienia, a tym samym ma ograniczoną skuteczność w separacji składników o zbliżonych temperaturach wrzenia. Błędem jest zatem mylenie różnych technik destylacyjnych, co prowadzi do nieporozumień co do ich zastosowań i efektywności w każdej konkretnej sytuacji. Ważne jest, aby zrozumieć różnice między tymi metodami oraz zasady ich działania, aby skutecznie dobierać odpowiednie techniki do przeprowadzenia destylacji w praktyce laboratoryjnej.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Ekstrakcję w trybie ciągłym przeprowadza się

A. w zestawie do ogrzewania
B. w kolbie płaskodennej
C. w rozdzielaczu z korkiem
D. w aparacie Soxhleta
Proces ekstrakcji w sposób ciągły odbywa się w aparacie Soxhleta, który jest standardowym urządzeniem stosowanym w chemii analitycznej oraz w laboratoriach badawczych. Działa na zasadzie cyklicznego przepływu rozpuszczalnika, który wielokrotnie przepływa przez materiał, z którego ma zostać wydobyty składnik aktywny. W aparacie Soxhleta, rozpuszczalnik jest podgrzewany do wrzenia, a jego opary skraplają się w kondensatorze, skąd spływają z powrotem do komory ekstrakcyjnej zawierającej próbkę. Ta efektywna cyrkulacja umożliwia skuteczniejsze rozpuszczanie substancji, co jest kluczowe w wielu zastosowaniach, takich jak wydobywanie olejków eterycznych, substancji czynnych z roślin czy w analizach chemicznych. Dobre praktyki w zakresie ekstrakcji obejmują także dobór odpowiedniego rozpuszczalnika oraz kontrolę temperatury, aby zminimalizować straty substancji i uzyskać wysoką czystość produktu końcowego. Ponadto, dzięki ciągłemu procesowi, możliwe jest uzyskanie większych ilości ekstraktu w krótszym czasie, co zwiększa efektywność laboratorium.

Pytanie 30

Sączenie na gorąco powinno być użyte, aby

A. nie miało miejsca wydzielanie kryształów z roztworu
B. doszło do rozpuszczenia substancji obecnych w roztworze
C. nie doszło do rozpuszczenia substancji obecnych w roztworze
D. miało miejsce wydzielanie kryształów z roztworu
Odpowiedzi, które sugerują, że sączenie na gorąco ma na celu rozpuszczenie substancji zawartych w roztworze lub zapobieganie ich wydzielaniu w postaci kryształów, nie uwzględniają rzeczywistych zasad fizykochemicznych, które rządzą tym procesem. Sącząc na gorąco, dąży się do tego, aby zminimalizować ryzyko krystalizacji, a nie do rozpuszczania substancji. W rzeczywistości, podczas podgrzewania roztworu, substancje, które są mniej rozpuszczalne w wyższych temperaturach, mogą zacząć wytrącać się w postaci kryształów, co jest niepożądane w kontekście oczyszczania. Sącząc na gorąco, kluczowe jest również zrozumienie, że proces ten pozwala na przeprowadzenie filtracji w warunkach, które zapobiegają osadzaniu się zanieczyszczeń na dnie naczynia, co może prowadzić do błędnych wniosków analitycznych. W praktyce laboratoryjnej ignorowanie tych aspektów może prowadzić do nieefektywnego oczyszczania i uzyskiwania produktów o niższej jakości, co jest niezgodne z dobrymi praktykami w chemii analitycznej. Zrozumienie zasad działania sączenia na gorąco jest kluczowe dla prawidłowego przeprowadzania analiz chemicznych oraz procesów syntezy.

Pytanie 31

Aby oddzielić galaretowaty osad typu Fe(OH)3 od roztworu, jaki sączek należy zastosować?

A. miękki
B. twardy
C. średni
D. częściowy
Odpowiedź "miękki" jest chociażby słuszna, bo przy filtracji osadu galaretowatego Fe(OH)<sub>3</sub> musimy mieć dobry sączek, który nie tylko zatrzyma cząsteczki, ale i pozwoli je łatwo oddzielić od roztworu. Miękkie sączki, jak te z papieru filtracyjnego, mają drobne pory, więc świetnie zatrzymują małe cząsteczki osadu. W laboratoriach używa się takich miękkich sączków, zwłaszcza przy gęstych substancjach. Na przykład, w oczyszczaniu wody czy w chemicznych analizach, gdzie oddzielamy osady od cieczy, miękki sączek daje nam dobrą selektywność i zmniejsza ryzyko zatykania porów. Dlatego wybór sączka jest mega ważny i trzeba go dopasować do właściwości substancji, co jak się domyślam, jest zgodne z zasadami dobrych praktyk w labie.

Pytanie 32

Aby rozpuścić próbkę tłuszczu o wadze 5 g, wykorzystuje się 50 cm3 mieszanki 96% alkoholu etylowego oraz eteru dietylowego, połączonych w proporcji objętościowej 1 : 2. Jakie ilości cm3 każdego ze składników są potrzebne do przygotowania 150 cm3 tej mieszanki?

A. 75 cm3 alkoholu etylowego oraz 75 cm3 eteru dietylowego
B. 100 cm3 alkoholu etylowego oraz 200 cm3 eteru dietylowego
C. 100 cm3 alkoholu etylowego oraz 50 cm3 eteru dietylowego
D. 50 cm3 alkoholu etylowego oraz 100 cm3 eteru dietylowego
Odpowiedź 50 cm³ alkoholu etylowego i 100 cm³ eteru dietylowego jest poprawna, ponieważ mieszanka przygotowywana w stosunku objętościowym 1:2 oznacza, że na każdą część alkoholu przypadają dwie części eteru. Aby obliczyć ilość składników w przypadku 150 cm³ całkowitej objętości, stosujemy proporcje. W tym przypadku 1 część alkoholu etylowego i 2 części eteru oznaczają, że 1/3 całkowitej objętości to alkohol, a 2/3 to eter. Zatem, 150 cm³ * 1/3 = 50 cm³ alkoholu etylowego, a 150 cm³ * 2/3 = 100 cm³ eteru dietylowego. Zastosowanie takich proporcji jest zgodne z najlepszymi praktykami w chemii analitycznej, gdzie precyzyjne pomiary są kluczowe dla uzyskania powtarzalnych wyników. Dobrym przykładem zastosowania tej wiedzy jest praca w laboratoriach chemicznych, gdzie często przygotowuje się roztwory o określonych stężeniach i proporcjach, co jest niezbędne w badaniach jakości i ilości substancji chemicznych. Właściwe zrozumienie proporcji i ich zastosowania przyczynia się do skutecznych i bezpiecznych procedur laboratoryjnych.

Pytanie 33

Aby obliczyć gęstość cieczy przy użyciu metody hydrostatycznej, należy zastosować

A. wagę Mohra
B. wagosuszarkę
C. ebuliometr
D. piknometr
Waga Mohra jest urządzeniem stosowanym do wyznaczania gęstości cieczy poprzez pomiar siły wyporu, jaką ciecz wywiera na zanurzoną w niej masę. Proces ten opiera się na zasadzie Archimedesa, która mówi, że na ciało zanurzone w cieczy działa siła wyporu równa ciężarowi cieczy, którą to ciało wypiera. W praktyce, waga Mohra umożliwia precyzyjne pomiary gęstości różnych cieczy, co jest szczególnie istotne w laboratoriach chemicznych i przemysłowych. Na przykład, w branży chemicznej, znajomość gęstości substancji jest niezbędna do określenia ich stanu skupienia, stężenia roztworów czy też przy projektowaniu procesów technologicznych. Warto również zauważyć, że stosowanie wagi Mohra jest zgodne z normami ISO dotyczącymi pomiarów fizycznych, co zapewnia wiarygodność uzyskiwanych wyników.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

W trakcie kalibracji stężenia roztworu kwasu solnego na przynajmniej przygotowany roztwór zasady sodowej ma miejsce reakcja

A. wytrącania osadu
B. hydrolizy
C. zobojętniania
D. redoks
Wybór odpowiedzi związanej z redoks może wynikać z nieporozumienia dotyczącego mechanizmu reakcji. Reakcje redoks dotyczą transferu elektronów między reagentami, co jest charakterystyczne dla reakcji, w których zmiana stopnia utlenienia jest kluczowa. W przypadku reakcji kwasu solnego z zasadowym roztworem sodowym nie mamy do czynienia z takim transferem, ponieważ nie zachodzi zmiana stopnia utlenienia żadnego z reagentów. Kolejnym błędnym podejściem jest sugestia, że proces ten może być klasyfikowany jako hydroliza. Hydroliza to proces, w którym cząsteczki wody reagują z substancjami chemicznymi, prowadząc do ich rozkładu lub przekształcenia. Zobojętnienie kwasu przez zasadę nie jest hydrolizą, lecz specyficzną reakcją neutralizacji, gdzie produkty są wodą i solą. Ponadto, odpowiedź dotycząca wytrącania osadu jest nieadekwatna w kontekście tej reakcji, ponieważ w przypadku neutralizacji nie tworzy się osad, chyba że na przykład poprzez dodanie innego reagentu w określonych warunkach, co nie jest istotą tej konkretnej reakcji. Właściwe zrozumienie różnic pomiędzy tymi procesami chemicznymi jest kluczowe dla prawidłowego przewidywania wyników reakcji i ich zastosowań w praktyce laboratoryjnej. Dlatego ważne jest, aby pamiętać, że reakcje zobojętniania są nie tylko podstawą chemii analitycznej, ale również mają szerokie zastosowanie w przemyśle i badaniach naukowych.

Pytanie 36

Aby wykonać chromatografię cienkowarstwową, należy przygotować eluent składający się z toluenu, acetonu oraz kwasu mrówkowego w proporcjach objętościowych 10:4:1. Jakie ilości poszczególnych składników powinny być wykorzystane do uzyskania 300 cm3 eluentu?

A. 150 cm3 toluenu, 60 cm3 acetonu oraz 15 cm3 kwasu mrówkowego
B. 200 cm3 toluenu, 80 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
C. 80 cm3 toluenu, 200 cm3 acetonu oraz 20 cm3 kwasu mrówkowego
D. 300 cm3 toluenu, 75 cm3 acetonu oraz 30 cm3 kwasu mrówkowego
Aby przygotować eluent w chromatografii cienkowarstwowej, musimy zachować odpowiednie proporcje objętości składników. W przypadku stosunku 10:4:1 oznacza to, że na każde 10 części toluenu przypada 4 części acetonu i 1 część kwasu mrówkowego. Sumując te proporcje, otrzymujemy 15 części łącznie. Dla 300 cm³ eluentu obliczamy objętości poszczególnych składników w następujący sposób: (10/15) * 300 cm³ = 200 cm³ toluenu, (4/15) * 300 cm³ = 80 cm³ acetonu, oraz (1/15) * 300 cm³ = 20 cm³ kwasu mrówkowego. Przygotowanie eluentu w tych dokładnych proporcjach zapewnia optymalne warunki separacji składników w chromatografii. W praktyce, takie precyzyjne przygotowanie roztworów jest istotne, aby zapewnić powtarzalność wyników oraz zgodność z normami laboratoryjnymi dotyczących analizy chemicznej. Warto również zauważyć, że stosowanie odpowiednich proporcji składników eluentu może wpływać na efektywność separacji i rozdziału substancji, co jest kluczowe w analityce chemicznej.

Pytanie 37

Pobieranie próbek wody z zbiornika wodnego, który zasila system wodociągowy, powinno odbywać się

A. w najgłębszym punkcie, z którego czerpana jest woda
B. na powierzchni wody, w centralnej części zbiornika
C. na powierzchni wody, w pobliżu brzegu zbiornika
D. w miejscu oraz na głębokości, gdzie następuje czerpanie wody
Zbieranie próbek wody na powierzchni zbiornika, zarówno przy brzegu, jak i na środku, jest nieodpowiednie, ponieważ nie odzwierciedla rzeczywistych warunków wody, która jest później używana w systemie wodociągowym. Pobieranie próbek wyłącznie z powierzchni może prowadzić do fałszywego obrazu jakości wody, ponieważ może ignorować zanieczyszczenia znajdujące się w niższych warstwach, które mogą być znacznie gorszej jakości. Na przykład, substancje chemiczne mogą osiadać na dnie zbiornika lub występować w niższych warstwach wody, a ich obecność nie będzie wykryta podczas pobierania próbek z powierzchni. Dodatkowo, zasysanie wody z najgłębszego miejsca zbiornika może wydawać się logiczne, jednak nie zawsze odpowiada to rzeczywistemu miejscu poboru, które może znajdować się w innym punkcie zbiornika na określonej głębokości. Warto również zauważyć, że zanieczyszczenia mogą różnić się w różnych częściach zbiornika, a ich analiza wymaga dokładnego określenia warunków, w których woda jest pobierana. Dlatego kluczowe jest, aby próbki były pobierane w miejscu i na głębokości, w której odbywa się rzeczywisty pobór wody, co zapewnia reprezentatywność wyników i zgodność z obowiązującymi standardami jakości wody.

Pytanie 38

W trakcie określania miana roztworu NaOH, do zmiareczkowania 25,0 cm3 tego roztworu, użyto 30,0 cm3 roztworu HCl o stężeniu 0,1000 mol/dm3. Jakie miało miano zasady?

A. 0,1000 mol/dm3
B. 0,1200 mol/dm3
C. 0,2000 mol/dm3
D. 0,1500 mol/dm3
Wiele osób może nie dostrzegać, że poprawne obliczenia miana roztworu NaOH opierają się na znajomości stoichiometrii reakcji chemicznych oraz zrozumieniu, jak stosunki molowe wpływają na obliczenia. Wybrane odpowiedzi, takie jak 0,1000 mol/dm³, mogą sugerować błędne założenie, że miano NaOH odpowiada stężeniu HCl, co jest nieprawidłowe. Odpowiedzi wskazujące na miano 0,1500 mol/dm³ lub 0,2000 mol/dm³ mogą wynikać z błędnego przeliczenia objętości reagenta lub pomyłki w stosunku molowym. W praktyce, takie błędy są częste, gdy osoby nie biorą pod uwagę, że w reakcji neutralizacji między NaOH a HCl dochodzi do wymiany moli zgodnie z równaniem 1:1. Dlatego kluczowe jest, aby w obliczeniach uwzględniać zarówno objętości, jak i właściwe stężenia reagentów. Typowymi pułapkami są również błędy w jednostkach, gdzie pomijanie konwersji cm³ na dm³ prowadzi do nieprawidłowych wyników. Niewłaściwe zrozumienie reakcji chemicznych oraz ich stoichiometrii może skutkować fałszywymi wynikami, co w kontekście analitycznym jest niedopuszczalne. Rekomendacje branżowe sugerują regularne sprawdzanie obliczeń oraz stosowanie wzorców referencyjnych, aby zapewnić prawidłowość wyników, co jest niezwykle istotne w laboratoriach badawczych i przemysłowych.

Pytanie 39

Z partii materiału należy pobrać ogólną próbkę w ilości odpowiadającej promilowi całej partii. Na podstawie podanej informacji określ, ile pierwotnych próbek, każda ważąca 10 g, trzeba pobrać z partii cukru o masie 0,5 t, aby uzyskać reprezentatywną próbkę ogólną?

A. 10
B. 50
C. 5
D. 100
Aby uzyskać reprezentatywną próbkę ogólną z partii cukru o masie 0,5 t (czyli 500 kg), należy zastosować zasadę pobierania próbek o odpowiedniej masie. Zgodnie z normami i wytycznymi, w przypadku materiałów takich jak cukier, zaleca się, aby próbka ogólna stanowiła co najmniej 0,1% całkowitej masy partii. W przypadku 500 kg, 0,1% wynosi 0,5 kg, co odpowiada 500 g. Jeśli każda próbka pierwotna ma masę 10 g, to aby uzyskać 500 g, potrzebujemy 50 próbek (500 g / 10 g = 50). Takie podejście zapewnia, że próbka ogólna będzie odzwierciedlać rzeczywistą homogeniczność partii, co jest kluczowe w kontekście zapewnienia jakości i zgodności z normami bezpieczeństwa żywności. W praktyce, odpowiednie pobieranie próbek ma kluczowe znaczenie w procesach kontroli jakości, analizy i certyfikacji produktów spożywczych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.