Destylacja jest procesem rozdzielania składników mieszaniny ciekłej, który opiera się na różnicy w ich temperaturach wrzenia. W praktyce polega to na odparowaniu jednej lub więcej frakcji z cieczy, a następnie ich skropleniu w osobnym naczyniu. Proces ten jest szeroko stosowany w przemyśle chemicznym oraz petrochemicznym do oczyszczania i separacji substancji, takich jak woda, alkohole czy oleje. Przykładem może być destylacja ropy naftowej, gdzie różne frakcje, takie jak benzyna, nafta czy olej napędowy, są oddzielane poprzez kontrolowane podgrzewanie. Zastosowanie destylacji można również zauważyć w laboratoriach chemicznych, gdzie wykorzystuje się ją do oczyszczania rozpuszczalników. Standardy branżowe, takie jak ASTM D86, opisują metody i procedury przeprowadzania destylacji, co jest kluczowe dla zapewnienia powtarzalności i dokładności wyników. W kontekście bezpieczeństwa, ważne jest stosowanie odpowiednich materiałów i urządzeń, aby zminimalizować ryzyko związane z procesem, zwłaszcza w przypadku substancji łatwopalnych.
Destylacja jest procesem, który często bywa mylony z innymi rodzajami przekształceń materii, co prowadzi do nieporozumień w zakresie jej definicji i zastosowania. Na przykład, synteza substancji pod wpływem katalizatora to zupełnie inny proces chemiczny, ukierunkowany na tworzenie nowych związków chemicznych, a nie na ich separację. W przeciwieństwie do destylacji, która polega na rozdzielaniu składników mieszaniny na podstawie różnic w temperaturach wrzenia, synteza nie wymaga odparowania i skraplania. Kolejnym błędnym podejściem jest utożsamianie destylacji z przejściem ze stanu stałego w stan gazowy, co dotyczy sublimacji, a nie destylacji. Procesy te różnią się fundamentalnie; sublimacja pomija stan ciekły, co nie jest charakterystyczne dla destylacji. Również przechodzenie ciała ze stanu ciekłego w stan stały, czyli krystalizacja, nie ma związku z destylacją, której celem jest selektywne odseparowanie składników na podstawie ich właściwości fizycznych. Powszechny błąd myślowy polega na myleniu tych procesów z uwagi na ich podobieństwa w kontekście zmian fazowych. W przemyśle i laboratoriach ważne jest, aby zrozumieć te różnice, ponieważ niewłaściwe zrozumienie procesu może prowadzić do nieefektywnych metod separacji, a tym samym do obniżenia jakości uzyskanych produktów lub wydajności procesów technologicznych.