Aby obliczyć masę kwasu mrówkowego potrzebnego do otrzymania 11,2 dm³ tlenku węgla(II) w warunkach normalnych, możemy skorzystać z zależności gazów doskonałych oraz stochiometrii reakcji chemicznych. W warunkach normalnych 1 mol gazu zajmuje objętość 22,4 dm³. Stąd dla 11,2 dm³ tlenku węgla(II) potrzebujemy 0,5 mola CO. Reakcja odwodnienia kwasu mrówkowego (HCOOH) przy użyciu kwasu siarkowego(VI) prowadzi do powstania tlenku węgla(II) oraz wody. Równanie reakcji chemicznej można zapisać jako: HCOOH → CO + H₂O. Z równania wynika, że 1 mol kwasu mrówkowego daje 1 mol tlenku węgla(II). Skoro potrzebujemy 0,5 mola CO, to oznacza, że potrzebujemy 0,5 mola HCOOH. Molarna masa kwasu mrówkowego wynosi 46 g/mol, więc masa potrzebnego kwasu wynosi: 0,5 mol × 46 g/mol = 23 g. Z uwagi na to, że proces ma wydajność 70%, rzeczywista masa kwasu mrówkowego, którą musimy zastosować, wynosi: 23 g / 0,7 = 32,9 g. Ta odpowiedź jest zatem prawidłowa i opiera się na standardach obliczeń chemicznych oraz praktykach laboratoryjnych, które uwzględniają wydajność reakcji. W praktyce, takie obliczenia są kluczowe w przemyśle chemicznym oraz laboratoriach badawczych.
Podczas analizy błędnych odpowiedzi warto zwrócić uwagę na kilka kluczowych koncepcji dotyczących stoichiometrii i obliczeń chemicznych. Po pierwsze, każdy obliczenia związane z ilościami reagentów w reakcjach chemicznych powinny opierać się na prawidłowym zrozumieniu stochiometrii, a nie intuicji. Nie uwzględniając objętości gazu w odniesieniu do moli, można dojść do błędnych wniosków, które prowadzą do zaniżenia lub zawyżenia wymaganej ilości substancji. Na przykład, wybór odpowiedzi 18,6 g może wynikać z nieprawidłowego założenia, że tylko część kwasu mrówkowego jest potrzebna, bez uwzględnienia jego stężenia w stosunku do ilości tlenku węgla(II), który chcemy otrzymać. Z kolei 16,1 g może być efektem obliczeń opartych na błędnym dobieraniu jednostek lub pominięciu wydajności procesów chemicznych. Z drugiej strony, odpowiedź 23,1 g może wynikać z założenia, że wydajność reakcji jest 100%, co jest rzadko spotykanym przypadkiem w praktyce laboratoryjnej i przemysłowej. W rzeczywistości, procesy chemiczne rzadko osiągają pełną wydajność, co powinno być zawsze brane pod uwagę w obliczeniach. Błąd w tych odpowiedziach pokazuje, jak ważne jest zrozumienie nie tylko samej reakcji chemicznej, ale także parametrów takich jak wydajność, molowość oraz objętość gazów w warunkach normalnych. Aby uniknąć takich błędów, istotne jest stosowanie się do ustalonych metod obliczeniowych i dokładne analizowanie dostępnych danych.