Wapń w postaci węglanu wapnia (CaCO3) ulega rozkładowi termicznemu, w wyniku którego powstaje tlenek wapnia (CaO) oraz dwutlenek węgla (CO2). Reakcję można zapisać jako: CaCO3 → CaO + CO2. Zgodnie z prawem zachowania masy, ilość moli reagujących reagentów można wyznaczyć na podstawie objętości gazu wytworzonego w reakcjach chemicznych. W warunkach normalnych 1 mol gazu zajmuje 22,4 dm3. W tym przypadku mamy 44,8 dm3 CO2, co odpowiada 2 molom CO2 (44,8 dm3 / 22,4 dm3/mol = 2 mol). Z równania reakcji wnioskujemy, że 1 mol CaCO3 produkuje 1 mol CO2, więc do produkcji 2 moli CO2 potrzebujemy 2 moli CaCO3. Masa molowa CaCO3 wynosi: M = M_C + M_Ca + 3*M_O = 12 g/mol + 40 g/mol + 3*16 g/mol = 100 g/mol. Zatem 2 mole CaCO3 to 200 g. W praktyce znajomość tego procesu jest kluczowa w przemyśle chemicznym, gdzie węglan wapnia jest powszechnie stosowany, na przykład w produkcji cementu oraz jako surowiec w różnych reakcjach chemicznych. Takie obliczenia są niezwykle ważne w projektowaniu procesów przemysłowych oraz w laboratoriach chemicznych.
W odpowiedziach, które nie są prawidłowe, można dostrzec kilka powszechnych błędów myślowych. Jednym z typowych błędów jest niewłaściwe zrozumienie proporcji reagentów w reakcji chemicznej. Na przykład, wybór 100 g, 150 g lub 250 g jako masy wapienia może wynikać z błędnego założenia dotyczącego ilości wytworzonego dwutlenku węgla lub nieprawidłowego przeliczenia objętości gazu na moles. Warto pamiętać, że każda reakcja chemiczna ma swoje specyficzne współczynniki stechiometryczne, które powinny być dokładnie przestrzegane. Drugim problemem może być nieuwzględnienie, że w warunkach normalnych 1 mol gazu zajmuje 22,4 dm3, co jest kluczowym elementem w obliczeniach ilości gazu. Wiele osób pomija ten krok lub używa przybliżenia, co prowadzi do niepoprawnych wyników. Wreszcie, wybór 250 g może wynikać z mylnego założenia, że masa węglanu wapnia jest znacznie wyższa, niż ma to miejsce w rzeczywistości. Ważne jest, aby pamiętać, że precyzyjne obliczenia w chemii są kluczowe dla uzyskania właściwych wyników, a każdy błąd w tych obliczeniach może prowadzić do poważnych konsekwencji w praktyce przemysłowej i badawczej. Dlatego należy kłaść duży nacisk na dokładność i zrozumienie chemicznych zasad rządzących przeprowadzanymi reakcjami.