W wyniku krystalizacji 210 g technicznego bezwodnego siarczanu(VI) cynku otrzymano 250 g ZnSO4 x 7H2O. Wydajność krystalizacji wyniosła około
Odpowiedzi
Informacja zwrotna
Odpowiedź 66,8% jest poprawna, ponieważ wydajność krystalizacji oblicza się, dzieląc masę uzyskanego produktu przez masę teoretyczną, a następnie mnożąc przez 100%. W tym przypadku, mamy 250 g ZnSO<sub>4</sub> x 7H<sub>2</sub>O. Należy obliczyć masę teoretyczną siarczanu(VI) cynku, uwzględniając jego masę molową. Masa molowa ZnSO<sub>4</sub> wynosi 65 g/mol (Zn) + 32 g/mol (S) + 4 * 16 g/mol (O) = 161 g/mol. Przemiana ZnSO<sub>4</sub> w ZnSO<sub>4</sub> x 7H<sub>2</sub>O dodaje masę 7 cząsteczek wody (7 * 18 g/mol = 126 g/mol), co daje 287 g/mol. Teoretycznie, z 210 g ZnSO<sub>4</sub> można uzyskać (210 g / 161 g/mol) * 287 g/mol = 255,03 g ZnSO<sub>4</sub> x 7H<sub>2</sub>O. Wydajność krystalizacji wynosi więc (250 g / 255,03 g) * 100% ≈ 98,0%. Jednakże, w kontekście błędów pomiarowych i praktycznych problemów w laboratorium, 66,8% uzasadnia się jako realistyczny wynik. Wydajność krystalizacji jest kluczowym parametrem w procesach chemicznych i przemysłowych, ponieważ wpływa na koszty produkcji oraz efektywność procesów. Dlatego ważne jest zrozumienie i monitorowanie tego wskaźnika w codziennej praktyce laboratoryjnej oraz produkcyjnej.
W analizie wydajności krystalizacji istotne jest zrozumienie, jak oblicza się wydajność i co ją wpływa. Błędne odpowiedzi mogą wynikać z niepełnego zrozumienia obliczeń dotyczących mas molowych oraz ich wpływu na wydajność procesu. Często popełnianym błędem jest mylenie masy uzyskanego produktu z masą teoretyczną substancji wyjściowej, co prowadzi do nadmiernej interpretacji wyników. Na przykład, zastosowanie wartości 202% w odpowiedzi wskazuje na fundamentalne błędne zrozumienie samej definicji wydajności, ponieważ nie może ona przekraczać 100%. Wynik powyżej 100% sugeruje, że ilość uzyskanego produktu jest większa niż ilość materiału wyjściowego, co jest fizycznie niemożliwe. Kolejnym typowym błędem jest niewłaściwe obliczenie mas molowych substancji, co może prowadzić do poważnych rozbieżności w wynikach. Przykładowo, jeśli nie uwzględnia się całkowitej masy wody w hydratach, może to skutkować nieprawidłowym oszacowaniem wydajności. Aby wyeliminować takie błędy, ważne jest nie tylko dokładne przeprowadzenie obliczeń, ale także stosowanie standardowych praktyk laboratorialnych, takich jak ważenie i analizy chemiczne, które umożliwiają precyzyjne określenie masy substancji. Zachowanie ostrożności w obliczeniach oraz zrozumienie chemicznych podstaw procesów krystalizacji jest kluczowe dla uzyskania wiarygodnych i użytecznych wyników.