Prawidłowo – czas połowicznego zaniku (okres półtrwania) to pojęcie absolutnie kluczowe właśnie w medycynie nuklearnej. Opisuje on, w jakim czasie aktywność promieniotwórcza danego radionuklidu spada o połowę. W praktyce oznacza to, że po jednym czasie połowicznego zaniku mamy 50% wyjściowej aktywności, po dwóch – 25%, po trzech – 12,5% itd. W medycynie nuklearnej trzeba brać pod uwagę zarówno fizyczny czas połowicznego zaniku (rozpad jądra atomowego), jak i biologiczny czas półtrwania (eliminacja radiofarmaceutyku z organizmu), a w planowaniu badań często korzysta się z tzw. efektywnego czasu połowicznego zaniku, który łączy oba te procesy. Dzięki temu można prawidłowo dobrać dawkę radiofarmaceutyku do scyntygrafii, PET czy terapii izotopowej (np. jodem-131 w leczeniu nadczynności tarczycy lub raka tarczycy), tak żeby uzyskać wystarczająco dobrą jakość obrazu, a jednocześnie nie narażać pacjenta na niepotrzebnie dużą dawkę promieniowania. W standardach medycyny nuklearnej ogromny nacisk kładzie się na świadome dobieranie izotopu o odpowiednim okresie półtrwania: do diagnostyki preferuje się radionuklidy o krótkim czasie połowicznego zaniku (np. technet-99m, fluor-18), które szybko się rozpadają i zmniejszają narażenie po badaniu, natomiast w terapii można stosować izotopy o dłuższym okresie, żeby efekt terapeutyczny utrzymywał się wystarczająco długo w tkance nowotworowej. Z mojego doświadczenia uczenia się do egzaminów, zrozumienie tego pojęcia bardzo ułatwia ogarniecie, dlaczego konkretne radioizotopy wybiera się do konkretnych procedur i czemu w opisach badań zawsze pojawia się informacja o aktywności w MBq i momencie jej podania. To nie jest sucha teoria, tylko realny fundament bezpiecznego i sensownego planowania badań i terapii radioizotopowych.
Czas połowicznego zaniku kojarzy się wielu osobom ogólnie z promieniowaniem, więc łatwo automatycznie przypisać go do każdej metody obrazowania, w której pojawia się promieniowanie jonizujące. I tu pojawia się typowy błąd: wrzucanie do jednego worka rentgenografii, tomografii komputerowej, radioterapii i medycyny nuklearnej. W rentgenografii i tomografii komputerowej źródłem promieniowania są lampy rentgenowskie, które generują promieniowanie wtedy, kiedy płynie prąd przez lampę. Nie ma tam materiału promieniotwórczego, który samorzutnie się rozpada, więc nie ma sensu mówić o czasie połowicznego zaniku. Parametrami technicznymi są kV, mAs, czas ekspozycji, geometria układu, filtracja wiązki, ale nie okres półtrwania. Oczywiście w opisie ochrony radiologicznej czasem wspomina się o dawkach i ekspozycji, jednak to zupełnie inny temat niż rozpad jądrowy radionuklidów. Podobnie w teleradioterapii z użyciem akceleratora liniowego: promieniowanie wytwarzane jest na bieżąco w głowicy akceleratora, a planowanie dawki opiera się na rozkładzie dawki w tkankach, krzywych procentowej dawki głębokiej, MLC, frakcjonowaniu itd. Czas połowicznego zaniku nie jest tam podstawowym narzędziem pracy. Wyjątkiem są starsze lub specyficzne systemy oparte na źródłach izotopowych (np. kobaltoterapia, brachyterapia), ale to już inny typ procedur niż klasyczna teleradioterapia z LINAC-em, a i tak pojęcie okresu półtrwania dotyczy wtedy głównie serwisu i planowania wymiany źródeł, a nie codziennego dawkowani pacjentowi. Medycyna nuklearna jest jedyną z wymienionych dziedzin, gdzie bezpośrednio pracuje się z radioizotopami, przygotowuje radiofarmaceutyki i oblicza aktywność w funkcji czasu. Tam okres półtrwania jest absolutnie centralnym parametrem: wpływa na logistykę dostaw, czas podania radiofarmaceutyku, planowanie okna obrazowania, a także na bezpieczeństwo personelu i pacjenta. Mylenie tego z klasycznym RTG czy TK wynika najczęściej z intuicyjnego skojarzenia: jest promieniowanie, więc musi być i okres półtrwania. W praktyce dobrze jest w głowie rozdzielić: tam, gdzie mamy źródło promieniowania w postaci lampy – myślimy o parametrach elektrycznych i geometrycznych; tam, gdzie mamy materiał promieniotwórczy – myślimy o czasie połowicznego zaniku, aktywności, rozpadającym się jądrze atomu i farmakokinetyce radiofarmaceutyku.