Poprawnie – czas repetycji (TR, od ang. repetition time) w obrazowaniu metodą rezonansu magnetycznego to odstęp czasu między dwoma kolejnymi impulsami częstotliwości radiowej 90° pobudzającymi ten sam wycinek. Mówiąc prościej: mierzysz od jednego „strzału” RF przygotowującego magnetyzację pod sekwencję do następnego takiego samego „strzału”. Ten parametr jest kluczowy, bo decyduje, ile czasu mają protony na relaksację podłużną (T1) przed kolejnym pobudzeniem. Im krótszy TR, tym silniejsze jest ważenie T1, a im dłuższy TR, tym bardziej obraz zbliża się do ważenia T2 lub PD, bo różnice w T1 się częściowo „wyrównują”. W praktyce technik MR dobiera TR w zależności od celu badania i zaleceń protokołu: dla obrazów T1-zależnych stosuje się z reguły krótkie czasy repetycji (rzędu kilkuset ms), a dla T2-zależnych – zdecydowanie dłuższe (kilka tysięcy ms). Ma to bezpośredni wpływ nie tylko na kontrast tkanek, ale też na czas trwania całej sekwencji i komfort pacjenta w gantrze. Moim zdaniem, dobrze jest od razu łączyć w głowie TR z pojęciem „odpoczynku” magnetyzacji po impulsie RF – za krótki odpoczynek zmienia kontrast, ale skraca badanie, za długi – poprawia pewne aspekty diagnostyczne, ale wydłuża czas skanowania. W nowoczesnych protokołach klinicznych parametry TR są ściśle zdefiniowane w wytycznych producentów i rekomendacjach towarzystw radiologicznych, więc w praktyce zawodowej bardzo często operuje się gotowymi zestawami sekwencji, ale zrozumienie, że TR to właśnie czas między impulsami RF, pozwala świadomie modyfikować badanie, np. przy artefaktach czy u pacjentów, którzy nie wytrzymują długiego skanowania.
W rezonansie magnetycznym łatwo się pogubić w różnych czasach: mamy czas repetycji (TR), czas echa (TE) i czas inwersji (TI). Jeżeli nie złapie się intuicji, co który oznacza, to odpowiedzi oparte na skojarzeniach typu „kąt”, „szczyt sygnału” czy „odwrócenie” brzmią sensownie, ale niestety mijają się z fizyką badania. Czas repetycji nie ma nic wspólnego z „czasem kąta przeskoku”. W MR owszem, mówimy o kącie odchylenia magnetyzacji (np. 90°, 180°, małe kąty w sekwencjach GRE), ale nie mierzymy żadnego „czasu kąta”. Kąt jest parametrem impulsu RF, a TR to odstęp czasowy między kolejnymi impulsami pobudzającymi. Łączenie TR z kątem wynika często z mylenia definicji z pracą gradientów i zmianą fazy, ale to zupełnie inna bajka. Z kolei określenie „czas mierzony od impulsu odwracającego 180° do impulsu 90°” opisuje w istocie czas inwersji (TI) stosowany w sekwencjach inwersyjno-odtworzeniowych, takich jak STIR czy FLAIR. TI dobieramy tak, żeby wygasić sygnał określonej tkanki, np. tłuszczu albo płynu mózgowo-rdzeniowego. To bardzo ważny parametr, ale nie jest to TR. W tych sekwencjach nadal istnieje TR, który liczymy od cyklu do cyklu pobudzenia, natomiast TI jest dodatkowym czasem w środku sekwencji. Następne błędne skojarzenie to „czas mierzony od impulsu 90° do szczytu amplitudy sygnału odebranego w cewce”. To już bardziej przypomina definicję czasu echa (TE). TE to odstęp między impulsem pobudzającym RF (zwykle 90°) a momentem, w którym rejestrujemy maksimum sygnału echa w cewce. TE wpływa głównie na ważenie T2, bo od niego zależy, jak bardzo zdąży zajść relaksacja poprzeczna. Typowy błąd myślowy polega na tym, że wszystko, co „czasowe” w MR, wrzuca się do jednego worka i nazywa TR. W dobrej praktyce diagnostycznej trzeba te pojęcia rozdzielić: TR – czas między kolejnymi impulsami RF pobudzającymi ten sam wycinek, TE – czas do szczytu echa, TI – czas od impulsu 180° do 90°. Dopiero świadome operowanie tymi trzema parametrami pozwala rozumieć, dlaczego dany protokół daje obraz bardziej T1-, T2- czy PD-zależny i jak modyfikacje wpływają na kontrast, SNR i całkowity czas badania.