Prawidłowo – symulator rentgenowski w radioterapii służy przede wszystkim do weryfikacji i odwzorowania geometrii pól poszczególnych wiązek terapeutycznych. W praktyce oznacza to, że na symulatorze „na sucho” sprawdza się, czy zaplanowane pola napromieniania, kąty obrotu głowicy, kolimatora, ustawienie stołu i pozycja pacjenta rzeczywiście pokrywają się z obszarem, który ma być napromieniony. Moim zdaniem to jest taki etap próbny przed właściwym leczeniem – bez ryzyka podania dawki terapeutycznej. Symulator ma podobną geometrię jak akcelerator (odległość źródło–skóra, zakres ruchów ramienia, kolimatory), ale zamiast wiązki megawoltowej używa promieniowania diagnostycznego, więc można uzyskać obraz rentgenowski i sprawdzić ułożenie pól względem anatomii pacjenta. W standardach radioterapii podkreśla się, że prawidłowe odwzorowanie geometrii pól jest kluczowe dla bezpieczeństwa: dzięki symulacji można wykryć błędy w pozycjonowaniu, złe kąty projekcji, niewłaściwy margines wokół PTV czy niepotrzebne obciążenie narządów krytycznych (OAR). W codziennej pracy używa się symulatora do zaznaczenia na skórze pacjenta linii referencyjnych, punktów laserowych, czasem znaczników tuszem lub tatuaży, które później są używane przy każdym seansie na akceleratorze. Dobre praktyki mówią, że przed pierwszym napromienianiem plan powinien być zweryfikowany geometrycznie – kiedyś głównie na klasycznym symulatorze RTG, dziś coraz częściej na wirtualnym symulatorze opartym na TK, ale zasada jest ta sama: chodzi o kontrolę geometrii pól, a nie o dokładne mierzenie dawki czy tworzenie nowego obrazu 3D. Dzięki temu cały zespół ma większą pewność, że wiązka trafia dokładnie tam, gdzie zaplanował fizyk i lekarz.
Symulator rentgenowski w radioterapii bywa czasem mylony z innymi urządzeniami używanymi w planowaniu leczenia, co prowadzi do różnych nieporozumień. Jego główna rola nie polega na pomiarze ani weryfikacji dawki w obszarze PTV. Kontrola dawki odbywa się poprzez obliczenia w systemie planowania leczenia (TPS), pomiary fantomowe, testy QA akceleratora oraz za pomocą dozymetrii in vivo, a nie na klasycznym symulatorze RTG. Symulator daje obraz geometryczny pól, ale nie jest narzędziem do precyzyjnego sprawdzania rozkładu dawki terapeutycznej, bo używa innej energii promieniowania i innych warunków niż właściwa wiązka megawoltowa. Często też przypisuje się symulatorowi funkcję generowania trójwymiarowych informacji o lokalizacji guza. W nowoczesnej radioterapii do tego służy przede wszystkim tomograf komputerowy do planowania (CT-sim) oraz oprogramowanie TPS, które pozwala na rekonstrukcję 3D, segmentację PTV i OAR, fuzję obrazów z MR czy PET. Klasyczny symulator rentgenowski wykonuje głównie projekcje 2D (AP, PA, boczne, skośne) i umożliwia ustawienie pól, a nie pełne modelowanie objętości guza w trzech wymiarach. Kolejne nieporozumienie dotyczy odległości od wirtualnego źródła promieniowania do skóry pacjenta. Owszem, na symulatorze można sprawdzić i ustawić SSD lub SAD, ale nie jest to jego unikalne zadanie – te odległości są standardowo kontrolowane na samym akceleratorze przy każdym zabiegu, z użyciem wskaźników odległości, laserów i systemów pozycjonowania. Redukowanie roli symulatora tylko do mierzenia odległości trochę mija się z celem, bo sednem jego użycia jest właśnie odtworzenie geometrii pól terapeutycznych, sprawdzenie projekcji osłon, listków MLC (w miarę możliwości), bloków, klinów oraz porównanie ich z anatomią pacjenta na obrazie RTG. Typowy błąd myślowy polega na mieszaniu funkcji: CT-symulatora, systemu planowania, akceleratora i symulatora RTG. Ten ostatni służy głównie do geometrycznej weryfikacji ustawień – czy pola są tam, gdzie trzeba, czy marginesy są prawidłowe, czy znaczniki na skórze i lasery zgadzają się z planem. Dlatego poprawne rozumienie jego roli jest ważne, bo wpływa bezpośrednio na bezpieczeństwo i dokładność całego procesu napromieniania.