Prawidłowo wybrany detektor z amorficznym selenem to klasyczny przykład tzw. bezpośredniej detekcji promieniowania X. W takim układzie fotony promieniowania rentgenowskiego są pochłaniane bez udziału pośredniego świecenia (bez etapu emisji światła widzialnego), a ich energia jest od razu zamieniana na ładunek elektryczny w warstwie półprzewodnika, właśnie amorficznego selenu (a-Se). Pod wpływem promieniowania w a-Se powstają pary elektron–dziura, które następnie są zbierane dzięki przyłożonemu polu elektrycznemu i rejestrowane przez matrycę cienkowarstwowych tranzystorów (TFT). Daje to bardzo dobrą rozdzielczość przestrzenną, co w praktyce świetnie sprawdza się np. w mammografii cyfrowej, gdzie liczy się widoczność drobnych mikrozwapnień i bardzo delikatnych struktur. W systemach bezpośrednich unika się rozmycia związanego z rozpraszaniem światła w luminoforze, dlatego krawędzie struktur są ostrzejsze, a obraz bardziej „czysty”. Z mojego doświadczenia to właśnie na detektorach z a-Se najłatwiej dostrzec subtelne różnice gęstości tkanek. W wielu zaleceniach producentów i wytycznych dotyczących jakości obrazów (np. w mammografii) podkreśla się znaczenie wysokiej rozdzielczości i niskiego szumu, co systemy z bezpośrednią konwersją bardzo dobrze zapewniają. W praktyce klinicznej technik zwykle nie widzi „gołego” selenu, tylko cały panel detektora, ale warto kojarzyć, że jeśli w opisie sprzętu jest mowa o direct conversion, direct digital radiography z a-Se, to właśnie chodzi o taki mechanizm: promieniowanie X → ładunek elektryczny, bez etapu świecenia. To jest podstawowa różnica wobec detektorów scyntylacyjnych z jodkiem cezu, które pracują w trybie pośrednim.
W tym pytaniu bardzo łatwo dać się złapać na skojarzenie, że każdy nowoczesny detektor cyfrowy „konwertuje promieniowanie X na sygnał elektryczny”, więc każda z opcji brzmi trochę sensownie. Klucz leży jednak w słowie „bezpośrednio”. W systemach bezpośrednich fotony promieniowania X wnikają w warstwę półprzewodnika i tam od razu generują ładunek elektryczny. W systemach pośrednich jest etap światła pośredniego – promieniowanie X najpierw zamieniane jest na fotony widzialne w luminoforze, a dopiero to światło przetwarzane jest na sygnał elektryczny w fotodiodach. Płyta luminoforowa, znana z radiografii pośredniej (CR), jest typowym przykładem detekcji pośredniej. Promieniowanie X wzbudza centra pułapkowe w fosforze, a obraz jest „zapisany” w postaci energii uwięzionej. Dopiero później laser w czytniku CR wzbudza płytę, ta emituje światło, które fotopowielacz zamienia na sygnał elektryczny. Mamy więc kilka kroków, żadnego bezpośredniego przejścia X → ładunek. Detektor z jodkiem cezu (CsI) również nie jest układem bezpośrednim. CsI działa jak scyntylator: promieniowanie X jest pochłaniane i emitowane jest światło widzialne, które dopiero w kolejnym etapie pada na matrycę fotodiod (najczęściej z amorficznego krzemu) i tam dopiero powstaje sygnał elektryczny. Tego typu panele są bardzo popularne w radiografii przyłóżkowej i w aparatach stacjonarnych, ale to nadal jest detekcja pośrednia. Błona halogenosrebrowa w klasycznej radiografii analogowej też nie spełnia warunku bezpośredniej konwersji na sygnał elektryczny. Tam promieniowanie X (lub światło z ekranu wzmacniającego) powoduje zmiany fotochemiczne w kryształkach halogenków srebra. Obraz staje się widoczny dopiero po procesie chemicznym wywoływania i utrwalania, a nie jest w ogóle sygnałem elektrycznym. To już w ogóle zupełnie inny świat technologiczny. Typowy błąd myślowy polega na tym, że skoro na końcu zawsze mamy cyfrowy obraz, to wydaje się, że każdy element „jakimś cudem” działa elektrycznie. W rzeczywistości tylko detektor z amorficznym selenem w tym zestawie robi bezpośrednią konwersję promieniowania X na ładunek elektryczny, bez etapu światła ani procesów chemicznych. Dlatego właśnie ta odpowiedź jest jedyna zgodna z fizyką działania nowoczesnych detektorów bezpośrednich.