Prawidłowo wskazana została emisja promieniowania gamma. W fizyce jądrowej mówimy, że rozpad gamma to proces, w którym jądro atomowe przechodzi ze stanu wzbudzonego do stanu o niższej energii, nie zmieniając ani liczby protonów, ani neutronów. Czyli skład jądra zostaje ten sam, ale pozbywa się ono nadmiaru energii właśnie w postaci fali elektromagnetycznej o bardzo wysokiej energii – fotonu gamma. To jest klucz: gamma to nie cząstka materialna jak elektron czy alfa, tylko kwant promieniowania elektromagnetycznego. W medycynie nuklearnej ta właściwość jest wykorzystywana non stop. W badaniach scyntygraficznych czy PET dobiera się takie radioizotopy, które emitują głównie promieniowanie gamma (lub w PET: parę fotonów 511 keV po anihilacji), bo fale elektromagnetyczne gamma dobrze przechodzą przez tkanki i można je zarejestrować gammakamerą lub detektorami PET. Standardem jest np. technet-99m, który po przejściu do stanu podstawowego emituje foton gamma, a aparat rejestruje jego tor i tworzy obraz rozmieszczenia radiofarmaceutyku. Z mojego doświadczenia, dobra praktyka w pracowni medycyny nuklearnej to zawsze myślenie o tym, jakie dokładnie promieniowanie emituje dany izotop: czy jest to czyste gamma, beta plus, beta minus, czy mieszane. Ma to znaczenie dla ochrony radiologicznej, jakości obrazu i dawki dla pacjenta. Warto też pamiętać, że po rozpadzie alfa lub beta jądro potomne często jest w stanie wzbudzonym i dopiero potem „dorzuca” rozpad gamma – więc w dokumentacji fizycznej często widzimy kaskadę: najpierw zmiana składu jądra, a potem emisja fali elektromagnetycznej gamma jako etap „dooczyszczający” energię.
W tym zadaniu łatwo się pomylić, bo wszystkie wymienione typy promieniowania kojarzą się z promieniotwórczością, ale tylko jedno z nich jest faktycznie falą elektromagnetyczną. Rozpad alfa polega na emisji ciężkiej cząstki złożonej z dwóch protonów i dwóch neutronów, czyli w praktyce jądra helu. To jest obiekt materialny, ma masę spoczynkową, ładunek dodatni i bardzo krótki zasięg w tkankach. Jest silnie jonizujące, ale absolutnie nie jest to fala elektromagnetyczna, tylko strumień cząstek. Rozpad beta minus to z kolei przemiana neutronu w proton, połączona z emisją elektronu i antyneutrina. Tu znów głównym nośnikiem promieniowania, który nas interesuje, jest cząstka materialna – elektron beta. Ma ona masę, ładunek ujemny i zachowuje się bardziej jak elektron w wiązce przyspieszacza niż jak foton gamma. Podobnie w rozpadzie beta plus dochodzi do emisji pozytonu, czyli antyelektronu. Ten pozyton po wyhamowaniu w tkankach anihiluje z elektronem, i dopiero wtedy powstają dwa fotony gamma o energii 511 keV. Typowy błąd myślowy jest taki, że skoro w PET używa się izotopów beta plus, to niektórzy automatycznie utożsamiają rozpad beta plus z emisją fali elektromagnetycznej. Tymczasem sama przemiana jądra w trybie beta plus emituje cząstkę (pozyton), a fala elektromagnetyczna gamma pojawia się dopiero jako produkt anihilacji, formalnie będący osobnym etapem. Z punktu widzenia fizyki promieniowania i standardów opisu rozpadów w medycynie nuklearnej rozróżniamy wyraźnie: alfa, beta plus, beta minus to promieniowanie korpuskularne, a gamma to promieniowanie elektromagnetyczne wysokiej energii. W praktyce klinicznej ma to znaczenie dla osłon, planowania procedur, bezpieczeństwa personelu i pacjenta. Dlatego tak ważne jest, żeby kojarzyć emisję fali elektromagnetycznej bezpośrednio z promieniowaniem gamma, a nie z procesami alfa czy beta, nawet jeśli w ich następstwie też mogą pojawić się fotony gamma jako etap wtórny.