Prawidłowo, w procesie rozpadu promieniotwórczego emisja fali elektromagnetycznej dotyczy właśnie promieniowania gamma. Rozpad gamma polega na tym, że jądro atomu przechodzi ze stanu wzbudzonego do stanu o niższej energii, bez zmiany liczby protonów i neutronów. Nie zmienia się więc ani liczba masowa, ani liczba atomowa – zmienia się tylko poziom energetyczny jądra. W tym przejściu jądro emituje kwant promieniowania elektromagnetycznego o bardzo dużej energii, czyli foton gamma. To jest fizycznie fala elektromagnetyczna, podobna z natury do światła widzialnego czy promieniowania rentgenowskiego, tylko o znacznie wyższej energii i krótszej długości fali. W medycynie to ma ogromne znaczenie praktyczne. W medycynie nuklearnej izotopy stosowane do scyntygrafii (np. 99mTc) emitują właśnie promieniowanie gamma, które rejestruje gammakamera. Dzięki temu można tworzyć obrazy narządów i oceniać ich funkcję, np. perfuzję mięśnia sercowego czy czynność nerek. Podobnie w PET wykorzystuje się fotony gamma powstające w wyniku anihilacji pozytonu z elektronem. Z mojego doświadczenia, zrozumienie że gamma to fala elektromagnetyczna, a alfa i beta to cząstki, bardzo porządkuje całą fizykę promieniowania i ułatwia później ogarnięcie zasad ochrony radiologicznej. Standardy ochrony (np. ICRP) wyraźnie rozróżniają promieniowanie fotonowe (X, gamma) od cząstkowego, bo inne są materiały osłonowe i sposoby zabezpieczenia. W radioterapii też mamy wiązki fotonowe o energiach zbliżonych do gamma (z akceleratorów liniowych), które zachowują się bardzo podobnie w tkankach, co jest istotne przy planowaniu dawek.
W tym pytaniu kluczowe jest rozróżnienie między promieniowaniem cząstkowym a elektromagnetycznym. Promieniowanie alfa to strumień ciężkich cząstek – jąder helu (dwa protony i dwa neutrony). One mają dużą masę i ładunek dodatni, przez co bardzo silnie jonizują ośrodek, ale praktycznie nie są falą elektromagnetyczną, tylko typowo promieniowaniem korpuskularnym. W praktyce medycznej cząstki alfa są rzadziej wykorzystywane diagnostycznie, bardziej w bardzo specyficznych terapiach celowanych, a ich zasięg w tkankach jest minimalny. Dlatego kojarzenie alfa z falą elektromagnetyczną to takie trochę uproszczenie, które potrafi się w głowie zakodować, ale jest po prostu fizycznie błędne. Podobnie promieniowanie beta plus i beta minus to emisja cząstek, a nie fotonów. W rozpadzie beta minus z jądra emitowany jest elektron oraz antyneutrino, natomiast w rozpadzie beta plus – pozyton i neutrino. Elektron i pozyton to również cząstki naładowane, więc zachowują się w tkankach zupełnie inaczej niż fotony gamma: mają krótki zasięg, tor jest zakrzywiany przez pola magnetyczne, a charakter jonizacji jest inny. W PET faktycznie używamy izotopów beta plus, ale obraz rejestrowany jest nie z samego pozytonu, tylko z fotonów gamma powstających w anihilacji pozytonu z elektronem. I to jest ważne rozróżnienie, bo łatwo pomylić: „w PET jest beta plus, więc to chyba fala elektromagnetyczna”. Nie, fala elektromagnetyczna to dopiero gamma po anihilacji. W standardach fizyki medycznej i ochrony radiologicznej (ICRP, IAEA) promieniowanie alfa i beta klasyfikuje się jako promieniowanie korpuskularne, a gamma i X jako promieniowanie fotonowe, czyli elektromagnetyczne. Moim zdaniem warto sobie to poukładać: alfa i beta – cząstki, gamma i X – fotony. Dzięki temu później dużo łatwiej zrozumieć dobór osłon (ołów dla fotonów, lekkie materiały dla cząstek), charakter dawek oraz różnice w zastosowaniach diagnostycznych i terapeutycznych.