Poprawnie – fala głosowa, czyli fala akustyczna, w fizyce jest falą mechaniczną. To znaczy, że do swojego rozchodzenia się potrzebuje ośrodka materialnego, w którym cząsteczki mogą drgać i przekazywać energię dalej. Takim ośrodkiem mogą być gazy (np. powietrze), ciecze (np. woda) albo ciała stałe. W próżni nie ma cząsteczek, więc nie ma co drgać i klasyczna fala dźwiękowa po prostu nie może się tam rozchodzić. Dlatego odpowiedź „w gazach i cieczach” jest merytorycznie poprawna, chociaż warto pamiętać, że w rzeczywistości dźwięk rozchodzi się też w ciałach stałych. W praktyce medycznej i okołomedycznej ma to spore znaczenie. W audiometrii, badaniach słuchu czy przy kalibracji sprzętu do pomiaru hałasu zakłada się, że fala dźwiękowa biegnie głównie w powietrzu, czyli w gazie. Z kolei w ultrasonografii medycznej wykorzystujemy rozchodzenie się fal mechanicznych w tkankach, które fizycznie zachowują się jak różne ciecze i ciała stałe – stąd żel USG, żeby poprawić sprzężenie między głowicą a skórą, bo powietrze bardzo słabo przewodzi ultradźwięki. Moim zdaniem to jedno z tych prostych pytań, które później ułatwia zrozumienie, czemu np. badanie USG nie działa w powietrzu i czemu w kosmosie, w próżni, nie „słychać” eksplozji mimo że mogą emitować promieniowanie elektromagnetyczne. W dobrych praktykach technicznych zawsze rozróżniamy fale mechaniczne (wymagające ośrodka, jak dźwięk) od fal elektromagnetycznych (np. promieniowanie RTG, radiowe), które mogą iść w próżni.
Fala głosowa, czyli klasyczny dźwięk, jest falą mechaniczną podłużną. To oznacza, że do jej rozchodzenia się konieczna jest obecność ośrodka materialnego: cząsteczek, które mogą drgać i przekazywać sobie energię. W gazach drgają cząsteczki powietrza, w cieczach – cząsteczki cieczy, w ciałach stałych – atomy w sieci krystalicznej. Jeżeli ktoś zakłada, że fala dźwiękowa może rozchodzić się w próżni, to zwykle myli pojęcia związane z falami mechanicznymi i falami elektromagnetycznymi. W próżni nie ma praktycznie żadnych cząsteczek, więc nie ma ośrodka sprężystego, który mógłby przenosić zaburzenie ciśnienia. W efekcie fala głosowa tam zanika – po prostu nie może się utworzyć. Tymczasem fale elektromagnetyczne, takie jak promieniowanie rentgenowskie, gamma czy fale radiowe, nie potrzebują ośrodka, więc bez problemu rozchodzą się w próżni. Kto przyzwyczaił się do filmowego obrazu „głośnych eksplozji w kosmosie”, łatwo przenosi ten obraz na fizykę, co prowadzi do błędnych wniosków. Czasami pojawia się też mylne założenie, że skoro ultradźwięki wykorzystuje się w medycynie i są „falą”, to muszą zachowywać się jak fale elektromagnetyczne. Tymczasem ultradźwięki to nadal fale mechaniczne, tylko o wyższej częstotliwości niż słyszalna dla człowieka. Dlatego w ultrasonografii konieczny jest żel między głowicą a skórą – powietrze (gaz) słabo przenosi ultradźwięki, a w próżni nie przeszłyby w ogóle. Z mojego doświadczenia typowy błąd myślowy polega na wrzuceniu wszystkich „fal” do jednego worka i nieodróżnianiu, które wymagają ośrodka, a które nie. W poprawnym rozumieniu akustyki trzeba jasno oddzielić fale mechaniczne (dźwięk, ultradźwięki) od elektromagnetycznych (światło, RTG), bo od tego zależy sposób ich wykorzystania w diagnostyce i technice medycznej.