W badaniu PET standardowym radiofarmaceutykiem jest 18F-FDG, czyli deoksyglukoza znakowana izotopem fluoru-18. To właśnie fluor jest tutaj kluczowy. Jest to emiter pozytonów, który po podaniu dożylnym ulega rozpadowi, a powstające pozytony anihilują z elektronami w tkankach pacjenta. W wyniku anihilacji powstają dwie kwanty promieniowania gamma o energii 511 keV, lecące w przeciwnych kierunkach. Detektory w skanerze PET rejestrują te dwa fotony w koincydencji i na tej podstawie system rekonstruuje trójwymiarowy rozkład aktywności radiofarmaceutyku w organizmie. Dzięki temu można ocenić metabolizm glukozy w różnych narządach, głównie w mózgu, mięśniu sercowym oraz w tkance nowotworowej. W praktyce klinicznej 18F-FDG jest złotym standardem w onkologii, np. przy ocenie zaawansowania chłoniaków, raka płuca czy monitorowaniu odpowiedzi na chemioterapię. Moim zdaniem warto zapamiętać, że fluor-18 ma stosunkowo krótki czas połowicznego zaniku (ok. 110 minut), co z jednej strony wymaga dobrej logistyki (cyklotron, pracownia radiofarmacji, szybki transport), ale z drugiej ogranicza dawkę skuteczną dla pacjenta. Z punktu widzenia technika medycyny nuklearnej ważne jest też to, że FDG zachowuje się bardzo podobnie do naturalnej glukozy: wnika do komórek poprzez transportery GLUT, jest fosforylowana, ale dalej nie bierze udziału w glikolizie, więc „zatrzymuje się” w komórkach o wysokim metabolizmie. To właśnie pozwala obrazować ogniska nowotworowe, procesy zapalne czy żywotność mięśnia sercowego zgodnie z obowiązującymi protokołami i standardami EANM czy SNMMI.
W medycynie nuklearnej dobór właściwego radionuklidu do konkretnej procedury jest absolutnie kluczowy. W PET nie wystarczy, że pierwiastek jest radioaktywny; musi emitować pozytony o odpowiedniej energii, mieć dopasowany okres półtrwania i dać się wbudować w cząsteczkę biologicznie aktywną. Dlatego w przypadku obrazowania metabolizmu glukozy stosuje się fluor-18, a nie tor, fosfor czy technet. Tor kojarzy się niektórym z promieniotwórczością, ale w diagnostyce obrazowej praktycznie się go nie używa. Jego izotopy mają niekorzystne właściwości fizyczne i radiotoksykologiczne, a do tego nie ma uzasadnionych klinicznie radiofarmaceutyków z torem do rutynowych badań PET. To raczej temat badań specjalistycznych, głównie w kontekście terapii, a nie obrazowania metabolizmu glukozy. Fosfor rzeczywiście jest ważnym pierwiastkiem w biologii, a izotop 32P bywa używany w badaniach naukowych czy w niektórych terapiach, ale nie jest emiterem pozytonów stosowanym w klasycznym PET. Można spotkać go w kontekście terapii izotopowej, jednak nie jako znacznik glukozy. W PET do znakowania związków metabolicznych używa się głównie izotopów takich jak 18F, 11C, 13N czy 15O, właśnie ze względu na ich właściwości fizyczne. Technet-99m jest natomiast bardzo popularny w scyntygrafii planarne i SPECT, ale to emiter promieniowania gamma, a nie pozytonów. Świetnie sprawdza się w badaniach kości, perfuzji mięśnia sercowego czy nerek, jednak nie nadaje się do PET. Typowym błędem jest wrzucanie „wszystkich radioizotopów” do jednego worka – że jak coś jest promieniotwórcze, to można to podać i zobaczyć na każdym urządzeniu. W praktyce każdy tryb obrazowania (SPECT, PET, RTG) wymaga ściśle określonych energii i typów promieniowania. Właśnie dlatego glukoza w PET musi być znakowana fluorem-18, a nie dowolnym innym pierwiastkiem radioaktywnym.