Poprawnie – medyczny akcelerator liniowy stosowany w radioterapii emituje przede wszystkim wiązki fotonowe (promieniowanie X o wysokiej energii) oraz wiązki elektronowe. W praktyce klinicznej wygląda to tak, że w głowicy akceleratora powstaje wiązka elektronów przyspieszonych do energii rzędu kilku–kilkunastu MeV. Jeśli ten strumień elektronów uderza w tzw. tarczę hamującą (zwykle z wolframu), to w wyniku hamowania powstaje promieniowanie hamowania, czyli fotony o wysokiej energii. To jest właśnie typowa wiązka fotonowa używana w teleterapii do napromieniania guzów położonych głęboko w ciele, np. raka płuca, raka prostaty czy guzów w obrębie miednicy. Natomiast gdy tarcza jest odsunięta, a w torze wiązki wstawia się odpowiednie kolimatory rozpraszające, akcelerator może dostarczyć terapeutyczną wiązkę elektronową. Takie elektrony wykorzystuje się głównie do leczenia zmian powierzchownych lub leżących płytko, np. skóry, węzłów chłonnych nadobojczykowych czy blizn pooperacyjnych. Z mojego doświadczenia w planowaniu radioterapii, wybór między fotonami a elektronami zależy głównie od głębokości celu i ochrony tkanek zdrowych. W nowoczesnych ośrodkach onkologicznych jest to standard postępowania, zgodny z wytycznymi ESTRO i IAEA: dla głębokich guzów – fotony megawoltowe z akceleratora, dla zmian powierzchownych – elektrony o dobranej energii. Warto też pamiętać, że klasyczny medyczny akcelerator liniowy nie generuje wiązek protonowych ani neutronowych – do protonów służą osobne, znacznie bardziej rozbudowane systemy (protonoterapie).
Medyczny akcelerator liniowy w radioterapii bywa mylony z innymi typami akceleratorów cząstek, co prowadzi do różnych ciekawych, ale jednak błędnych skojarzeń. W odpowiedziach pojawiają się protony i neutrony, bo kojarzą się z nowoczesnymi metodami leczenia onkologicznego. W praktyce klinicznej klasyczny linac, jaki stoi na typowym oddziale radioterapii, generuje wyłącznie elektrony i pośrednio z nich – promieniowanie fotonowe o wysokiej energii. Żadne protony czy neutrony nie są tam terapeutycznie emitowane jako wiązka użytkowa. Protony wykorzystuje się w tzw. protonoterapii, ale do tego służą specjalne instalacje: cyklotrony, synchrotrony, gantry protonowe. To jest osobna gałąź radioterapii, z inną fizyką dawki (pik Bragga), inną infrastrukturą osłonową i zupełnie innym kosztem. Myląc akcelerator liniowy z ośrodkiem protonowym, pomijamy bardzo ważną różnicę techniczną: w linacu tor przyspieszania jest liniowy, a konstrukcja zoptymalizowana jest właśnie pod kątem wiązek fotonowych i elektronowych. Neutrony natomiast nie są w standardzie terapeutycznym w teleterapii megawoltowej. Owszem, przy bardzo wysokich energiach fotonów mogą powstawać tzw. neutrony fotoprodukowane, ale traktuje się je jako niepożądane promieniowanie uboczne, uwzględniane w ochronie radiologicznej, a nie jako wiązkę leczniczą. Dlatego skojarzenie „protonowe i neutronowe” albo „elektronowe i neutronowe” wynika zwykle z mieszania pojęć: ktoś słyszał o terapiach cząstkami naładowanymi albo o promieniowaniu neutronowym w reaktorach, i przenosi to automatycznie na zwykły akcelerator liniowy. Z punktu widzenia poprawnej fizyki medycznej i standardów radioterapii, prawidłowy zestaw wiązek z linaca to: fotony megawoltowe do leczenia głębokich guzów i elektrony o różnych energiach do zmian powierzchownych. To właśnie na tych dwóch typach promieniowania opiera się codzienna praca większości ośrodków radioterapii.