Prawidłowo wskazano, że w brachyterapii stosuje się głównie źródła promieniowania zamknięte emitujące zarówno promieniowanie cząsteczkowe, jak i fotonowe. „Zamknięte” oznacza, że izotop promieniotwórczy jest szczelnie zamknięty w kapsule (np. stalowej, tytanowej), więc nie ma kontaktu z tkankami pacjenta ani personelem. To jest kluczowe z punktu widzenia ochrony radiologicznej – radioizotop nie może się rozlać, wniknąć do organizmu czy skazić otoczenia, jak w medycynie nuklearnej z radiofarmaceutykami otwartymi. W brachyterapii stosuje się m.in. źródła Ir-192, Co-60, I-125, Cs-137. Emitują one promieniowanie fotonowe (głównie gamma) oraz w części przypadków promieniowanie cząsteczkowe (np. elektrony, beta). W praktyce klinicznej najważniejsze jest to, że dawka jest dostarczana z bardzo małej odległości – aplikatory, igły, druty lub tzw. „seedy” są wprowadzane bezpośrednio do guza lub do jam ciała (np. do kanału szyjki macicy, pochwy, oskrzela). Dzięki temu można uzyskać bardzo strome spadki dawki poza guzem, czyli oszczędzić narządy krytyczne: pęcherz, odbytnicę, jelita, ślinianki itd. Z mojego doświadczenia technicznego brachyterapia HDR z Ir-192 to klasyczny przykład: automatyczny afterloader wysuwa mikroźródło po zaplanowanych pozycjach, a my mamy do czynienia cały czas ze źródłem zamkniętym, które po zabiegu wraca do osłoniętego magazynu. Tego typu źródła są opisane w standardach ICRP oraz krajowych przepisach z zakresu radioterapii, które wymagają ich regularnej kontroli: testów szczelności, weryfikacji aktywności, kontroli geometrycznej położeń. W dobrze prowadzonej pracowni brachyterapii całe planowanie opiera się właśnie na założeniu, że mamy punktowe lub liniowe źródło zamknięte, o znanym widmie promieniowania fotonowego i ewentualnie cząsteczkowego, co umożliwia precyzyjne obliczanie rozkładu dawki w systemach TPS.
Wątpliwości wokół tego pytania zwykle wynikają z mieszania pojęć z medycyny nuklearnej i radioterapii. W brachyterapii kluczowe jest to, że stosuje się źródła promieniowania zamknięte, a nie otwarte. Źródło otwarte to takie, które może się przemieszczać, rozlać, być wchłonięte do organizmu – typowy przykład to radiofarmaceutyki podawane dożylnie czy doustnie w medycynie nuklearnej, np. jod-131 w leczeniu tarczycy. W brachyterapii byłoby to kompletnie niepraktyczne i niebezpieczne, bo celem jest bardzo precyzyjne, geometrycznie stabilne napromienianie guza, a nie ogólne rozprowadzenie izotopu po całym organizmie. Dlatego odpowiedzi sugerujące „źródła otwarte” wynikają raczej z automatycznego skojarzenia: promieniowanie jonizujące = radioizotopy podawane pacjentowi. Tutaj jest odwrotnie, izotop jest zamknięty w aplikatorze, igle czy kapsule. Druga pułapka dotyczy typu emitowanego promieniowania. Część osób sądzi, że w brachyterapii stosuje się tylko promieniowanie cząsteczkowe, bo kojarzą igły czy druty z jakąś formą „bombardowania” cząstkami. Tymczasem większość klasycznych źródeł brachyterapeutycznych emituje przede wszystkim promieniowanie fotonowe (gamma, czasem X), a promieniowanie cząsteczkowe, jeśli występuje, ma zwykle mniejszy zasięg i inne znaczenie kliniczne. Z punktu widzenia planowania dawki i algorytmów w systemach TPS istotne jest znane widmo fotonów oraz geometryczna konfiguracja zamkniętego źródła, a nie swobodne rozprzestrzenianie się radioizotopu. Mylenie tego z terapią izotopową w medycynie nuklearnej prowadzi do wniosku, że wystarczą „otwarte” źródła, co byłoby sprzeczne z zasadami ochrony radiologicznej, przepisami prawa i praktyką kliniczną. Standardy radioterapii (np. wytyczne ESTRO, IAEA) jasno podkreślają, że brachyterapia opiera się na szczelnych, kontrolowanych źródłach zamkniętych, które można bezpiecznie przechowywać w afterloaderze, precyzyjnie pozycjonować i okresowo testować pod kątem szczelności i aktywności. Dlatego odpowiedzi ograniczające się tylko do promieniowania cząsteczkowego lub mówiące o źródłach otwartych po prostu nie odzwierciedlają realnej technologii używanej w nowoczesnych pracowniach brachyterapii.