Prawidłowo – na tym obrazie mamy klasyczny przykład artefaktu typu „cut off”, czyli sytuacji, gdy wymiary obiektu przekraczają pole widzenia (FOV – field of view). W badaniu MR, gdy FOV jest ustawione zbyt małe w stosunku do rzeczywistych rozmiarów badanego obszaru, część sygnału z tkanek leżących poza polem widzenia zostaje „przefazowana” i odwzorowuje się w niewłaściwym miejscu obrazu. Moim zdaniem to jeden z bardziej podchwytliwych artefaktów, bo wynika wyłącznie z parametrów akwizycji, a nie z awarii sprzętu. W praktyce technik powinien zawsze sprawdzić, czy dobrane FOV obejmuje całą głowę pacjenta w danej płaszczyźnie, szczególnie w sekwencjach T2-zależnych w projekcji strzałkowej i osiowej. Standardem dobrej praktyki jest kontrola tzw. prescan lub scout view i korekta FOV jeszcze przed właściwą serią. Jeśli FOV jest za małe, pojawiają się charakterystyczne „obcięcia” lub powtórzenia struktur anatomicznych przy krawędziach obrazu, widoczne nieraz jako dziwne przesunięcia lub brak fragmentów czaszki czy tkanek miękkich. W protokołach MR mózgu zwykle stosuje się FOV rzędu 220–260 mm, ale zawsze trzeba to dostosować do budowy pacjenta – u osób z dużą czaszką albo przy badaniach z maską unieruchamiającą lepiej od razu dać trochę większe FOV. W codziennej pracy ważne jest też, żeby nie próbować „ratować” jakości obrazu innymi parametrami (np. macierzą czy zoomem), jeśli pierwotnie FOV jest źle ustawione. Podsumowując: artefakt, który tu widzisz, nie wynika z uszkodzenia aparatu, tylko z czysto geometrycznego ograniczenia pola widzenia – i to właśnie tłumaczy, dlaczego poprawną odpowiedzią jest przekroczenie FOV przez badany obiekt.
W tego typu pytaniu łatwo pójść w stronę skomplikowanych wyjaśnień o sprzęcie, a tymczasem problem jest czysto geometryczny. Artefakt widoczny na obrazie MR nie wynika ani ze złego doboru cewki gradientowej, ani z nieprawidłowej kalibracji aparatu, ani z ogólnej niejednorodności pola magnetycznego, tylko z faktu, że badany obszar jest większy niż ustawione pole widzenia. Z mojego doświadczenia wielu uczniów automatycznie obwinia gradienty, bo kojarzą je z zniekształceniami obrazu, ale w nowoczesnych systemach dobór cewki gradientowej jest z góry narzucony przez konstrukcję skanera. Operator nie wybiera sobie innej cewki gradientowej do głowy czy brzucha – gradienty są integralną częścią gantry. Dlatego „zły dobór cewki gradientowej” praktycznie nie występuje jako przyczyna pojedynczego artefaktu na jednym badaniu, raczej jako poważna wada konstrukcyjna, która psułaby wszystkie obrazy. Podobnie z kalibracją aparatu: błędna kalibracja zwykle daje globalne problemy jakościowe, niestabilność sygnału, błędy w geometrii całego badania, a nie lokalne „obcięcie” struktur przy krawędzi pola widzenia. Takie zjawisko jest typowe dla źle dobranego FOV, a nie dla offsetu kalibracyjnego. Niejednorodność pola magnetycznego z kolei daje inne typowe artefakty: zniekształcenia geometryczne przy granicy powietrze–kość, przemieszczenia sygnału, deformacje w sekwencjach EPI, ale nie efekt dosłownego urwania obrazu poza pewnym obszarem. To jest częsty błąd myślowy: skoro coś wygląda nienaturalnie, to „na pewno magnes jest nierówny”. Tymczasem tu kluczowe jest zrozumienie relacji między FOV, macierzą i rozmiarem pacjenta. Jeśli obiekt jest większy niż FOV, część sygnału aliasuje się, czyli nakłada na obraz, albo po prostu nie jest obrazowana. Właśnie dlatego w dobrych praktykach MR tak duży nacisk kładzie się na poprawne ustawienie scoutów, sprawdzenie, czy cała anatomia mieści się w polu widzenia, i dopiero potem uruchomienie właściwych sekwencji. Gdy się o tym pamięta, większości takich artefaktów można spokojnie uniknąć.