Prawidłowo wskazana właściwość to prostoliniowe rozchodzenie się promieniowania X. W praktyce oznacza to, że fotony promieniowania rentgenowskiego poruszają się po możliwie prostych liniach, dopóki nie zostaną pochłonięte, rozproszone albo zatrzymane przez przegrodę, kolimator, filtr czy tkanki pacjenta. Dzięki temu radiolog albo technik elektroradiologii może bardzo precyzyjnie „wycelować” promień centralny w konkretny punkt topograficzny, np. w środek stawu kolanowego, wyrostek barkowy łopatki czy przegrodę międzykręgową. Całe ustawianie lampy RTG, dobór projekcji i pozycjonowanie pacjenta opiera się właśnie na założeniu, że promień centralny biegnie prostoliniowo od ogniska lampy do detektora. Moim zdaniem to jest jedna z absolutnie kluczowych rzeczy w praktyce: jeśli rozumiesz prostoliniowe rozchodzenie się promieniowania, dużo łatwiej ogarnąć geometrie projekcji, zniekształcenia, powiększenie obrazu czy cieniowanie struktur. Standardy wykonywania zdjęć RTG (np. klasyczne projekcje AP, PA, boczne, skośne) bardzo mocno podkreślają konieczność prawidłowego ustawienia promienia centralnego względem osi długiej badanej kości czy danego narządu. Dzięki temu unika się zniekształceń, nakładania struktur i powtarzania ekspozycji, co jest też elementem dobrej praktyki ochrony radiologicznej – mniejsza liczba powtórzeń to mniejsze narażenie pacjenta i personelu. W codziennej pracy w pracowni RTG używa się wskaźników świetlnych i kolimatora, które pokazują pole promieniowania i właśnie kierunek promienia centralnego. Cała ta optyka działa sensownie tylko dlatego, że zakładamy prostoliniową trajektorię fotonów X, analogicznie jak w klasycznej geometrii świetlnej.
W tym pytaniu łatwo się pomylić, bo wszystkie podane cechy promieniowania X są prawdziwe, ale tylko jedna z nich ma bezpośredni związek z celowaniem promieniem centralnym w konkretny punkt na ciele pacjenta. Właściwość opisana jako przenikliwość różnego stopnia dotyczy zdolności fotonów rentgenowskich do przechodzenia przez tkanki o różnej gęstości i liczbie atomowej. Jest to fundament kontrastu obrazowego – dzięki temu kości, płuca czy tkanki miękkie mają inną gęstość optyczną na zdjęciu. Jednak ta cecha nie mówi nic o kierunku biegu promieni, a więc nie pozwala na precyzyjne „nakierowanie” wiązki na wybrany punkt topograficzny. To, że promieniowanie przenika mniej lub bardziej, wpływa na jakość obrazu, dawkę i dobór kV, ale nie na samo ustawienie promienia centralnego w przestrzeni. Zjawisko fotoelektryczne jest kolejną ważną właściwością, ale bardziej z zakresu fizyki medycznej niż geometrii badania. Odpowiada ono za pochłanianie promieniowania w tkankach i w detektorze, co przekłada się na kontrast i dawkę. Wysoki udział zjawiska fotoelektrycznego np. w kościach powoduje ich jasny obraz na kliszy lub detektorze cyfrowym. Jednak znowu – jest to proces zachodzący w skali mikroskopowej, związany z interakcją fotonu z elektronem, a nie z makroskopowym kierunkiem biegu wiązki w przestrzeni. Różnica w pochłanianiu przez różne substancje to w zasadzie opisowo to samo, co kontrast pochłaniania w tkankach: kość pochłania więcej, powietrze mniej, tkanka miękka coś pośrodku. To klucz do interpretacji zdjęcia, ale nie do ustawiania lampy względem pacjenta. Typowym błędem myślowym jest mieszanie „jak powstaje obraz” z „jak ustawiamy geometrię badania”. Celowanie promieniem centralnym, wybór projekcji, użycie wskaźnika świetlnego i kolimatora wynikają z prostoliniowego rozchodzenia się promieniowania X i zasad geometrii wiązki, natomiast pozostałe właściwości wpływają głównie na kontrast, ekspozycję i dawkę, a nie na sam kierunek promienia.