Prawidłowo rozpoznano artefakt zawijania obrazu (aliasing). Na tym skanie RM głowy widać struktury anatomiczne „przeniesione” spoza pola widzenia (FOV) do wnętrza obrazu – wyglądają jakby fragment czaszki lub tkanek miękkich nagle pojawiał się w nienaturalnym miejscu, przy brzegu kadru. To właśnie typowy obraz zawijania: sygnał z obszaru poza FOV zostaje „zmapowany” po przeciwnej stronie obrazu w kierunku fazowym. W praktyce klinicznej ten artefakt występuje najczęściej przy zbyt małym polu obrazowania w osi przednio–tylnej lub lewo–prawo, szczególnie w badaniach głowy, kręgosłupa szyjnego i jamy brzusznej. Dobre praktyki według standardów producentów aparatów MR i wytycznych to m.in.: zwiększenie FOV w kierunku fazowym, zastosowanie oversamplingu (phase oversampling, no phase wrap), zmianę kierunku kodowania fazy, a w razie potrzeby użycie cewek powierzchniowych o mniejszym zasięgu. Moim zdaniem bardzo ważne jest, żeby w technikum od razu kojarzyć: obraz „przełożony” przez krawędź kadru = zawijanie, a nie poruszenie czy efekt uśrednienia. W realnej pracy technika zawijanie potrafi całkowicie uniemożliwić ocenę np. tylnej jamy czaszki, jeśli sygnał z nosa lub twarzy wchodzi w pole móżdżku, dlatego rutynowo kontroluje się FOV i parametry fazy jeszcze przed rozpoczęciem sekwencji. Warto też pamiętać, że w sekwencjach szybkich, np. FSE, aliasing może być bardziej widoczny, więc tym bardziej trzeba pilnować ustawień.
Na przedstawionym obrazie RM głowy mamy klasyczny przykład artefaktu zawijania obrazu, a nie efekt uśrednienia, poruszenia pacjenta ani przesunięcia chemicznego. W diagnostyce obrazowej MR bardzo łatwo pomylić te zjawiska, bo każde z nich pogarsza jakość obrazu, ale ich mechanizm fizyczny i wygląd są zupełnie inne. Poruszenie pacjenta powoduje najczęściej rozmycie konturów, podwójne krawędzie, smugi wzdłuż kierunku kodowania fazy, czasem takie „cienie duchy” od naczyń pulsujących. Cały obraz wygląda jakby był lekko rozmazany, szczególnie tam, gdzie granica tkanek jest ostra, np. między istotą szarą a białą. Tutaj struktury są ostre, tylko pewne elementy anatomiczne pojawiają się w nienaturalnym miejscu, co bardziej pasuje do aliasingu niż ruchu. Efekt uśrednienia (partial volume effect) to z kolei zjawisko związane z grubymi warstwami i dużym voxel’em: sygnał z różnych tkanek mieszanych w jednym voxelu uśrednia się, przez co zanika kontrast między strukturami. Na obrazie nie widzielibyśmy dodatkowych nałożonych fragmentów, tylko np. słabiej widoczne granice kory, wygładzenie zakrętów, zlewanie się małych struktur. Tego tutaj nie ma. Przesunięcie chemiczne dotyczy głównie granicy tłuszcz–woda, np. w okolicy oczodołów lub tkanki podskórnej, i objawia się cienkim pasemek jasnym i ciemnym po dwóch stronach granicy, przesuniętym w kierunku fazowym. Jest to subtelny, liniowy artefakt na styku tkanek o różnym przesunięciu częstotliwości, a nie całe „przerzucone” fragmenty głowy. Typowym błędem jest patrzenie tylko na to, że obraz jest „dziwny” i odruchowe obwinianie ruchu pacjenta. Z mojego doświadczenia w pracowni MR dużo osób nie zwraca uwagi na kierunek kodowania fazy i wielkość FOV, a to właśnie one decydują o powstawaniu zawijania. Dlatego warto przy każdym takim pytaniu przeanalizować: czy widzę rozmycie i smugi (ruch), liniowe pasma na granicy tłuszcz–woda (przesunięcie chemiczne), czy raczej powtórzone, przesunięte fragmenty anatomii po przeciwnej stronie obrazu – czyli aliasing. Taka analiza bardzo pomaga później w realnej pracy przy optymalizacji sekwencji i szybkim korygowaniu błędów.