Prawidłowo wskazany parametr to napięcie na lampie [kV], bo to ono w praktyce najbardziej „rządzi” kontrastem obrazu rentgenowskiego. Z fizycznego punktu widzenia kV decyduje o energii fotonów promieniowania X. Im wyższe napięcie, tym bardziej przenikliwe promieniowanie, tym mniejsza różnica w pochłanianiu między tkankami o różnej gęstości i liczbie atomowej. Efekt jest taki, że kontrast maleje – obraz staje się bardziej „szary”, z mniejszym odróżnieniem struktur. Przy niższym kV fotony mają mniejszą energię, silniej ujawniają się różnice pochłaniania między np. kością a tkanką miękką, więc kontrast rośnie. W praktyce, w dobrych pracowniach RTG, dobór kV jest kluczowym elementem protokołu badania: do zdjęć klatki piersiowej u dorosłych stosuje się zwykle wyższe kV (np. 100–130 kV), żeby uzyskać niski kontrast, ale dobrą wizualizację całej objętości klatki i zmniejszyć dawkę. Natomiast do zdjęć kości, np. ręki czy stopy, używa się niższych napięć (55–65 kV), żeby podkreślić różnice między korą kostną, jamą szpikową i otaczającymi tkankami miękkimi. Moim zdaniem warto zapamiętać prostą zasadę: kV to przede wszystkim kontrast, a mAs to głównie jasność/zaszumienie (czyli ekspozycja). Oczywiście w praktyce wszystko się trochę przenika, ale w standardach radiologicznych i w podręcznikach fizyki medycznej właśnie tak to się uczy. Dobrą praktyką jest też to, że technik nie zmienia kV „na oko”, tylko trzyma się ustalonych protokołów dla danej projekcji i typu pacjenta, modyfikując kV świadomie, np. przy pacjencie otyłym albo u dziecka, pamiętając o wpływie na kontrast i dawkę.
Kontrast obrazu rentgenowskiego bardzo często jest mylony z ogólną „jakością” albo jasnością zdjęcia i stąd biorą się błędne skojarzenia z innymi parametrami ekspozycji. Filtracja w milimetrach aluminium jest ważnym elementem aparatu RTG, ale jej głównym celem jest odfiltrowanie miękkich, mało energetycznych fotonów, które zwiększają dawkę skórną, a niewiele wnoszą do obrazu. Zwiększenie filtracji rzeczywiście trochę „utwardza” wiązkę, ale w praktyce klinicznej nie jest to podstawowe narzędzie do sterowania kontrastem, tylko raczej do poprawy bezpieczeństwa i ujednolicenia widma promieniowania zgodnie z wymaganiami ochrony radiologicznej i normami jakościowymi. Iloczyn natężenia promieniowania i czasu, czyli mAs, odpowiada głównie za całkowitą ilość fotonów padających na detektor. Zwiększenie mAs powoduje, że obraz jest mniej zaszumiony i „gęstszy”, ale nie zmienia istotnie relacji pochłaniania między tkankami, więc nie ma decydującego wpływu na kontrast. Typowym błędem jest myślenie: więcej mAs = „mocniejsze” promieniowanie = większy kontrast. W rzeczywistości to jest bardziej kwestia ekspozycji i dawki, a nie różnic tonalnych między strukturami. Z kolei odległość źródło–detektor (SID) wpływa na natężenie promieniowania na detektorze zgodnie z prawem odwrotności kwadratu odległości. Zmiana SID zmienia więc ekspozycję i ostrość geometryczną (wielkość powiększenia, rozmycia), ale nie selektywnie kontrast między tkankami. Można mieć wrażenie, że przy innej odległości obraz wygląda trochę inaczej, jednak w profesjonalnych warunkach różnice te kompensuje się odpowiednią zmianą mAs. Kluczowy błąd myślowy przy tym pytaniu polega na utożsamianiu każdego parametru technicznego z kontrastem, podczas gdy mechanizm jest bardzo konkretny: kontrast w klasycznym RTG zależy przede wszystkim od energii fotonów, czyli od napięcia na lampie, które decyduje o tym, jak silne są różnice w pochłanianiu promieniowania przez tkanki o różnej gęstości i składzie chemicznym. Pozostałe parametry są ważne, ale z innych powodów – ekspozycji, dawki, ostrości czy bezpieczeństwa, a nie jako podstawowe narzędzie do sterowania kontrastem.