Poprawnie wskazana została wirtualna endoskopia (VE). To właśnie ten typ wtórnej rekonstrukcji obrazów TK umożliwia komputerowe „wejście” do światła narządów jamistych, takich jak jelito grube, tchawica czy oskrzela. Algorytm wykorzystuje bardzo cienkie warstwy TK (zwykle 0,5–1,25 mm), a następnie tworzy trójwymiarowy model światła przewodu, po którym można się poruszać jak przy klasycznej endoskopii. Różnica jest taka, że nie wprowadzamy żadnego endoskopu do pacjenta – wszystko dzieje się na konsoli stacji opisowej. W praktyce klinicznej stosuje się to np. w TK kolonografii (tzw. wirtualna kolonoskopia) do wykrywania polipów i guzów jelita grubego, szczególnie u pacjentów, którzy nie mogą mieć wykonanej klasycznej kolonoskopii. Podobnie wirtualna bronchoskopia z TK pozwala ocenić zwężenia, guzy i ucisk z zewnątrz w obrębie tchawicy i oskrzeli, co jest bardzo pomocne przy planowaniu zabiegów torakochirurgicznych czy bronchologicznych. Moim zdaniem ważne jest też to, że VE pozwala zobaczyć zmiany „zza zakrętu”, które na zwykłych obrazach osiowych mogą być łatwe do przeoczenia, a endoskopem czasem trudno tam dotrzeć. Dobre praktyki mówią, żeby VE zawsze interpretować razem z klasycznymi przekrojami TK (MPR), bo sama wirtualna endoskopia może czasem zniekształcać obraz, np. przy obecności zalegającego płynu, stolca czy artefaktów ruchowych. Warto też pamiętać, że VE nie zastępuje całkowicie klasycznej endoskopii – nie pozwala na pobranie wycinków ani wykonanie zabiegów, ale świetnie sprawdza się jako narzędzie przesiewowe i planistyczne. W codziennej pracy technika elektroradiologii kluczowe jest prawidłowe wykonanie badania TK (cienkie warstwy, odpowiednie okna rekonstrukcji), bo od jakości danych wejściowych zależy jakość wirtualnej endoskopii.
W tym pytaniu łatwo pomylić różne typy rekonstrukcji TK, bo wszystkie w jakimś sensie „przetwarzają” obraz, ale tylko jedna z nich naprawdę symuluje endoskop – to wirtualna endoskopia. Klasyczna prezentacja trójwymiarowa 3D polega głównie na tworzeniu modeli powierzchniowych lub objętościowych narządów, kości, naczyń. Świetnie nadaje się do oceny złamań, planowania zabiegów ortopedycznych czy rekonstrukcji naczyń po podaniu kontrastu, ale nie daje wrażenia poruszania się wewnątrz światła jelita czy drzewa oskrzelowego. To raczej oglądanie narządu „z zewnątrz” lub w formie bryły, nie jak w endoskopii. Rekonstrukcja wielopłaszczyznowa MPR (multiplanar reconstruction) umożliwia oglądanie obrazów w różnych płaszczyznach: czołowej, strzałkowej, skośnej. Jest to absolutna podstawa w TK – bez MPR trudno sobie dzisiaj wyobrazić dobrą ocenę kręgosłupa, zatok, naczyń czy płuc. Jednak nawet jeśli ustawimy płaszczyznę dokładnie w osi jelita czy tchawicy, nadal oglądamy przekroje, a nie widok jak z kamery wewnątrz narządu. To jest typowy błąd myślowy: skoro można „iść” płaszczyzną wzdłuż narządu, to niektórzy utożsamiają to z endoskopią, ale technicznie i funkcjonalnie to zupełnie coś innego. Projekcja maksymalnej intensywności MIP z kolei wybiera z danego wolumenu te piksele/voxele o najwyższej gęstości i rzutuje je na obraz dwuwymiarowy. Idealnie sprawdza się w angiografii TK do uwidaczniania naczyń wypełnionych kontrastem, czasem w ocenie zmian zwapnieniowych czy guzków płucnych. MIP podkreśla struktury o wysokiej gęstości, ale całkowicie gubi informację o wnętrzu światła jelita czy detale śluzówki w oskrzelach. Z mojego doświadczenia wynika, że mylenie MIP i 3D z VE bierze się z tego, że wszystkie te narzędzia są dostępne na jednej stacji roboczej i wyglądają „efektownie trójwymiarowo”. Jednak tylko wirtualna endoskopia oferuje interaktywną nawigację wewnątrz światła narządu, z możliwością ustawienia punktu widzenia tak, jakbyśmy patrzyli przez endoskop. Standardy dobrej praktyki w TK mówią jasno: do oceny wnętrza jelita grubego, tchawicy i oskrzeli w trybie endoskopowym używa się właśnie VE, zawsze jako uzupełnienie analiz MPR i innych rekonstrukcji, a nie ich zamiennik.