Prawidłowo wybrany został Tc-99m HMPAO, czyli technet-99m heksametylopropylenoamina oksym. To klasyczny radiofarmaceutyk stosowany w scyntygrafii perfuzyjnej mózgu, zarówno w badaniach stacjonarnych SPECT, jak i w niektórych protokołach dynamicznych. Ma on właściwości lipofilne, dzięki czemu łatwo przenika przez barierę krew–mózg i w stosunkowo krótkim czasie ulega utrwaleniu w tkance mózgowej proporcjonalnie do regionalnego przepływu krwi. Dzięki temu rozkład wychwytu Tc-99m HMPAO bardzo dobrze odzwierciedla perfuzję poszczególnych obszarów mózgu w momencie podania. W praktyce klinicznej używa się go m.in. do oceny ognisk niedokrwienia, w diagnostyce padaczki (lokalizacja ogniska padaczkowego), w ocenie otępień, a także w niektórych przypadkach urazów mózgu. Z mojego doświadczenia, przy badaniach padaczkowych bardzo ważny jest moment podania – HMPAO trzeba wstrzyknąć w trakcie napadu lub tuż po, żeby zobaczyć typowy wzrost przepływu w ognisku. Tc-99m jako znacznik ma korzystny okres półtrwania (ok. 6 godzin), emituje promieniowanie gamma o energii idealnej do gammakamery (140 keV) i daje dobrą jakość obrazów przy stosunkowo niskiej dawce dla pacjenta, co jest zgodne z zasadą ALARA w medycynie nuklearnej. W wytycznych i w praktyce większości pracowni perfuzyjna scyntygrafia mózgu kojarzy się głównie właśnie z Tc-99m HMPAO albo jego nowszym odpowiednikiem Tc-99m ECD. To są standardowe, rekomendowane radiofarmaceutyki do tego typu badań.
W scyntygrafii perfuzyjnej mózgu kluczowe jest, żeby radiofarmaceutyk miał dwie cechy: umiał przejść przez barierę krew–mózg i żeby jego wychwyt w tkance nerwowej był proporcjonalny do lokalnego przepływu krwi. Właśnie dlatego stosuje się specjalnie zaprojektowane związki, takie jak Tc-99m HMPAO czy Tc-99m ECD, a nie „dowolny” izotop promieniotwórczy. Częsty błąd polega na myśleniu, że skoro jod-123 lub jod-131 są powszechnie używane w medycynie nuklearnej, to nadają się do każdego badania. I-123 NaI jest rzeczywiście ważnym radiofarmaceutykiem, ale głównie do badań tarczycy, węzłów chłonnych czy niektórych badań receptorowych. Jod ma powinowactwo do tkanki tarczycowej i nie służy do obrazowania perfuzji mózgu; nie ma też odpowiedniej farmakokinetyki ani mechanizmu utrwalania w korze mózgowej. I-131 NaI to już w ogóle zupełnie inna liga – używany głównie terapeutycznie w leczeniu nadczynności tarczycy i raka tarczycy. Ma niekorzystne do diagnostyki energię fotonów gamma oraz emituje cząstki beta, co wiąże się z większym obciążeniem dawką i gorszą jakością obrazów. Wykorzystywanie I-131 do subtelnej oceny perfuzji mózgu byłoby sprzeczne z zasadami dobrej praktyki i ochrony radiologicznej. Kolejne typowe skojarzenie to Tc-99m MDP, często widziany w opisach scyntygrafii kości. Ten związek ma wysokie powinowactwo do tkanki kostnej, szczególnie w miejscach wzmożonego metabolizmu kostnego, i dlatego świetnie sprawdza się w onkologii czy ortopedii. Natomiast nie ma on zastosowania w badaniach perfuzji mózgu, bo nie przenika w sposób użyteczny przez barierę krew–mózg i nie odzwierciedla przepływu mózgowego. Mylenie Tc-99m jako znacznika z konkretną postacią chemiczną radiofarmaceutyku to bardzo częsty błąd – sam izotop to tylko „źródło promieniowania”, a o zastosowaniu decyduje przede wszystkim nośnik chemiczny. Dobre przygotowanie do pracy w medycynie nuklearnej wymaga kojarzenia: narząd – mechanizm wychwytu – odpowiedni radiofarmaceutyk. Przy mózgu i perfuzji od razu powinno się zapalać skojarzenie z Tc-99m HMPAO lub Tc-99m ECD, a nie z jodem czy preparatami kostnymi.