Prawidłowa odpowiedź to 223Ra, ponieważ jest to klasyczny emiter promieniowania alfa stosowany w medycynie nuklearnej, głównie w terapii izotopowej przerzutów do kości. Rad-223 emituje cząstki alfa, czyli jądra helu (2 protony + 2 neutrony). To promieniowanie ma bardzo mały zasięg w tkankach – rzędu kilku dziesiątych milimetra – ale bardzo wysoką gęstość jonizacji, czyli dużą liniową energię hamowania (wysokie LET). Dzięki temu uszkadza DNA komórek nowotworowych bardzo skutecznie, a jednocześnie relatywnie oszczędza tkanki zdrowe położone dalej. W praktyce klinicznej 223Ra wykorzystuje się np. w leczeniu przerzutów osteoblastycznych w raku prostaty. Podaje się go dożylnie jako radiofarmaceutyk, który wybiórczo gromadzi się w kościach, szczególnie w miejscach nasilonego metabolizmu kostnego. To się bardzo dobrze wpisuje w zasady medycyny nuklearnej, gdzie dobiera się izotop nie tylko pod kątem rodzaju promieniowania, ale też biokinetyki i okresu półtrwania. Z mojego doświadczenia, w technice medycznej warto zapamiętać, że emitery alfa, takie jak 223Ra, są raczej „narzędziem terapeutycznym”, a nie diagnostycznym – w przeciwieństwie do emiterów gamma czy beta+ wykorzystywanych w obrazowaniu (scyntygrafia, PET). W wytycznych i dobrych praktykach kładzie się nacisk na ścisłą kontrolę dawek i ochronę radiologiczną, bo mimo małego zasięgu w tkance, promieniowanie alfa jest bardzo niebezpieczne przy ekspozycji wewnętrznej (np. po wchłonięciu lub inhalacji). Dlatego przygotowanie, przechowywanie i podawanie 223Ra wymaga dobrze ogarniętej procedury, osobnych pomieszczeń i ścisłego przestrzegania zasad BHP w pracowni medycyny nuklearnej.
W tym pytaniu łatwo się pomylić, bo wszystkie podane izotopy są dobrze znane w medycynie, ale pełnią zupełnie różne role i emitują różne typy promieniowania. Kluczowe jest rozróżnienie, które radioizotopy są typowo diagnostyczne, a które terapeutyczne, oraz jaki jest ich główny rodzaj promieniowania. Fluor-18 jest klasycznym izotopem stosowanym w PET. To emiter beta plus (β+), czyli emituje pozytony. Pozyton anihiluje z elektronem, powstają dwa kwanty promieniowania gamma 511 keV, rejestrowane przez detektory w skanerze PET. On nie jest emiterem alfa, więc mimo że często pojawia się w praktyce, nie pasuje do tego pytania. Jod-131 to z kolei izotop kojarzony z leczeniem chorób tarczycy i diagnostyką scyntygraficzną. Jego główne znaczenie terapeutyczne wynika z emisji promieniowania beta minus (β−), które ma zasięg kilku milimetrów w tkance i pozwala niszczyć komórki tarczycy. Dodatkowo emituje promieniowanie gamma, przydatne diagnostycznie. Wiele osób myli silne działanie terapeutyczne z promieniowaniem alfa, ale tutaj to nadal beta minus. Technet-99m jest natomiast złotym standardem w diagnostyce scyntygraficznej. Emituje głównie promieniowanie gamma o energii około 140 keV, idealne do obrazowania gammakamerą. Ten izotop prawie nie ma zastosowania terapeutycznego, bo nie emituje ani beta, ani alfa w sposób klinicznie istotny. Mylenie go z emiterem alfa wynika czasem z tego, że jest „wszędzie” w medycynie nuklearnej, więc intuicyjnie wydaje się dobrym kandydatem. W rzeczywistości jedynym z wymienionych izotopów, który jest typowym emiterem promieniowania alfa, jest rad-223. To on ma wysokie LET, bardzo krótki zasięg w tkance i jest używany w terapii izotopowej, a nie w obrazowaniu. Dobra praktyka jest taka, żeby przy nauce radioizotopów od razu łączyć: rodzaj promieniowania + zastosowanie (diagnostyka/terapia) + przykład badania lub procedury klinicznej. To mocno ułatwia unikanie takich pomyłek.