Prawidłowo wskazany radioizotop to 223Ra, czyli rad-223. Jest to klasyczny emiter promieniowania alfa, wykorzystywany w medycynie nuklearnej głównie w leczeniu przerzutów do kości u chorych na raka prostaty opornego na kastrację. Cząstki alfa to jądra helu (2 protony i 2 neutrony), mają bardzo mały zasięg w tkankach – rzędu kilku dziesiątych milimetra – ale bardzo wysoką liniową gęstość jonizacji (wysoki LET). To oznacza, że oddają energię na bardzo krótkim dystansie, silnie uszkadzając DNA komórek nowotworowych, a jednocześnie relatywnie oszczędzając bardziej odległe, zdrowe tkanki. Właśnie dlatego 223Ra jest tak ceniony w tzw. terapii ukierunkowanej na kości: jako radionuklid emituje głównie promieniowanie alfa, wiąże się z tkanką kostną w miejscach wzmożonego metabolizmu kostnego (czyli tam, gdzie są przerzuty osteoblastyczne) i dostarcza bardzo skoncentrowaną dawkę w ognisku nowotworu. Z praktycznego punktu widzenia ważne jest, że alfa-emiter wymaga szczególnej ostrożności w zakresie ochrony radiologicznej personelu przy przygotowaniu i podawaniu radiofarmaceutyku, ale jednocześnie dawka narażenia dla otoczenia pacjenta jest zwykle mniejsza niż przy silnych emiterach gamma, bo cząstki alfa są łatwo pochłaniane. Moim zdaniem, jeśli ktoś pracuje w medycynie nuklearnej, to kojarzenie 223Ra z terapią paliatywną przerzutów do kości to absolutna podstawa. W wytycznych i standardach (różne towarzystwa onkologiczne i medycyny nuklearnej) podkreśla się, że wybór alfa-emiterów, takich jak 223Ra, jest szczególnie korzystny tam, gdzie zależy nam na wysokiej skuteczności biologicznej przy ograniczonym zasięgu promieniowania. To bardzo dobry przykład praktycznego zastosowania fizyki promieniowania w nowoczesnej terapii celowanej.
W tym pytaniu haczyk polega na odróżnieniu typów promieniowania emitowanych przez popularne radioizotopy stosowane w medycynie nuklearnej. Wiele osób intuicyjnie kojarzy izotopy używane w diagnostyce, takie jak 18F, 99mTc czy 131I, z „mocnym promieniowaniem” i przez to mylnie zakłada, że mogą być to emitery alfa. Tymczasem ich główne zastosowanie wynika z emisji promieniowania beta lub gamma, które mają zupełnie inne właściwości fizyczne i biologiczne niż cząstki alfa. Fluor-18 (18F) jest typowym emiterem pozytonów, czyli promieniowania beta plus. Pozyton ulega anihilacji z elektronem, co prowadzi do powstania dwóch kwantów promieniowania gamma o energii 511 keV, rejestrowanych przez skaner PET. Cała diagnostyka PET-CT opiera się właśnie na tym zjawisku anihilacji, a nie na promieniowaniu alfa. Gdyby 18F emitował cząstki alfa, zasięg promieniowania byłby zbyt mały, a obrazowanie całego ciała praktycznie niewykonalne. Jod-131 (131I) jest z kolei emiterem promieniowania beta minus oraz gamma. Wykorzystuje się go zarówno diagnostycznie, jak i terapeutycznie, na przykład w leczeniu raka tarczycy i nadczynności tarczycy. Działanie terapeutyczne wynika z cząstek beta, które mają większy zasięg niż alfa, ale mniejszy niż czyste gamma, natomiast komponent gamma pozwala na obrazowanie rozmieszczenia izotopu w organizmie. Myląc 131I z emiterem alfa, pomija się te dość dobrze opisane w podręcznikach właściwości. Technet-99m (99mTc) to w zasadzie „złoty standard” w scyntygrafii. Jest to izomer jądrowy emitujący promieniowanie gamma o energii około 140 keV, idealnej do gammakamery. Praktycznie nie wykorzystuje się go do celów terapeutycznych, bo nie emituje ani istotnego promieniowania beta, ani alfa. Typowy błąd myślowy polega tu na tym, że skoro coś jest bardzo popularne w medycynie nuklearnej, to musi być „silnym” izotopem, może nawet alfa – co jest nieprawdą, liczy się rodzaj i energia promieniowania, a nie „popularność” radionuklidu. Jedynym z podanych izotopów, który jest klasycznym emiterem alfa, pozostaje 223Ra. W nowoczesnych terapiach celowanych coraz częściej zwraca się uwagę na alfa-emiterów właśnie ze względu na wysoki LET i mały zasięg, ale to zupełnie inna grupa niż typowe diagnostyczne izotopy PET czy scyntygraficzne. Dlatego, analizując takie pytania, warto zawsze kojarzyć: PET – pozytony (beta plus), klasyczna scyntygrafia – głównie gamma, terapie jodem – beta i gamma, a alfa to raczej wyspecjalizowane, nieliczne radionuklidy, jak 223Ra w leczeniu przerzutów do kości.