Prawidłowo – klucz do zrozumienia nieostrości geometrycznej leży w wielkości ogniska optycznego lampy rentgenowskiej, czyli w praktyce w wielkości rzeczywistego ogniska anody. Im większe ognisko, tym większe „rozmycie” krawędzi struktur na obrazie, bo promienie wychodzą z większego obszaru, a nie z jednego punktu. Tworzy się wtedy tzw. półcień geometryczny. Dlatego w nowoczesnych aparatach RTG stosuje się małe ogniska (np. 0,6 mm, 1,0 mm) do badań wymagających wysokiej rozdzielczości, np. zdjęcia kości nadgarstka, stopy, zdjęcia zębowo-zębodołowe czy mammografia, gdzie standardy mówią wręcz o bardzo małych ogniskach, żeby dobrze pokazać drobne zwapnienia. Moim zdaniem warto zapamiętać prostą zasadę z praktyki: jeśli zależy nam na bardzo ostrym obrazie drobnych struktur, technik wybiera możliwie najmniejsze ognisko, jakie jeszcze „wytrzyma” wymaganą mAs, bez przegrzewania anody. Z kolei przy dużych polach, np. zdjęcie klatki piersiowej u dorosłego, często używa się większego ogniska, żeby nie przeciążyć lampy, kosztem lekkiego spadku ostrości, ale nadal akceptowalnego zgodnie z wytycznymi jakościowymi. Warto też kojarzyć, że nieostrość geometryczna zależy dodatkowo od odległości ognisko–błona (FDD) oraz odległości obiekt–błona: im większa odległość obiektu od detektora, tym większy półcień. Jednak w pytaniu pytają konkretnie, od czego zależy sama nieostrość geometryczna jako parametr aparatu – i tutaj decydująca jest właśnie wielkość ogniska optycznego, co jest klasycznym elementem fizyki medycznej i zasad wykonywania zdjęć RTG.
Problem nieostrości obrazu w radiografii często myli się z innymi zjawiskami, jak kontrast czy ziarnistość. W tym pytaniu chodzi konkretnie o nieostrość geometryczną, czyli o rozmycie krawędzi wynikające z geometrii układu: ognisko – obiekt – detektor. Podstawowa sprawa: im większe rzeczywiste ognisko anody, tym większy półcień i gorsza ostrość. To jest klasyczna definicja nieostrości geometrycznej, omawiana w fizyce medycznej i w standardach opisujących jakość obrazowania. Ilość promieniowania rozproszonego oczywiście pogarsza jakość obrazu, ale w inny sposób. Rozproszenie głównie obniża kontrast, powoduje „zamglenie” całego obrazu, ale nie jest źródłem typowej nieostrości geometrycznej. Z promieniowaniem rozproszonym walczy się kratką przeciwrozproszeniową, odpowiednim polem naświetlania, kolimacją wiązki oraz prawidłowym doborem kV, a nie przez zmianę ogniska. To jest inny aspekt jakości zdjęcia. Grubość emulsji błony rentgenowskiej ma znaczenie dla czułości, kontrastu i pewnej ziarnistości obrazu w klasycznych systemach analogowych, ale nie jest głównym czynnikiem definiującym nieostrość geometryczną. Można powiedzieć, że dotyczy raczej właściwości materiału rejestrującego niż geometrii wiązki. Podobnie wielkość ziarna luminoforu w folii wzmacniającej wpływa na tzw. nieostrość strukturalną: im większe ziarno, tym większe rozmycie i mniejsza rozdzielczość przestrzenna, ale to nie jest to samo, co nieostrość geometryczna wynikająca z wielkości ogniska i odległości w układzie. Typowy błąd myślowy polega na wrzucaniu wszystkich efektów pogorszenia jakości obrazu do jednego worka pod hasłem „nieostrość”. W praktyce trzeba rozróżniać: nieostrość geometryczną (ognisko, odległości), nieostrość ruchową (ruch pacjenta, zbyt długi czas ekspozycji) oraz nieostrość wynikającą z systemu rejestracji (błona, folia, piksel w detektorze cyfrowym). Dopiero takie rozróżnienie pozwala świadomie dobrać parametry ekspozycji i osprzęt, zgodnie z zasadami dobrej praktyki radiologicznej.