Prawidłowo wskazana została wielkość ogniska optycznego, czyli w praktyce rozmiar ogniska lampy rentgenowskiej. To właśnie od niego w dużym stopniu zależy nieostrość geometryczna, nazywana też nieostrością ogniskową. Im większe ognisko, tym bardziej krawędzie struktur na obrazie stają się rozmyte, bo promienie wychodzą z większego obszaru, a nie z jednego „punktu”. Z mojego doświadczenia dobrze to widać np. w radiogramach kości dłoni: przy dużym ognisku beleczki kostne i zarysy drobnych stawów są mniej wyraźne, przy małym ognisku – ostre jak żyleta. Dlatego w standardach pracowni RTG zaleca się używanie małego ogniska do badań wymagających wysokiej rozdzielczości przestrzennej: zdjęcia kostne, mammografia, drobne struktury stomatologiczne. Przy badaniach dużych części ciała, np. klatki piersiowej u dorosłego, częściej stosuje się większe ognisko, bo trzeba wytrzymać większe obciążenie cieplne lampy. W praktyce technik zawsze musi znaleźć kompromis między ostrością a możliwościami technicznymi aparatu i dawką dla pacjenta. Warto też pamiętać, że na nieostrość geometryczną wpływa dodatkowo odległość ognisko–błona oraz odległość obiekt–błona, ale „startem” całego problemu jest właśnie fizyczna wielkość ogniska. Gdy opanujesz tę zależność, łatwiej rozumiesz, dlaczego w protokołach badań RTG tak mocno podkreśla się dobór ogniska w zależności od badanej okolicy i masy ciała pacjenta.
W tym pytaniu łatwo się złapać na skojarzeniach z ogólną jakością obrazu, a nie z samą nieostrością geometryczną. Wiele osób myśli, że skoro coś pogarsza obraz, to na pewno odpowiada też za nieostrość. To nie do końca tak działa. Nieostrość geometryczna jest ściśle związana z geometrią układu: wielkością ogniska lampy, odległością ognisko–detektor oraz odległością obiekt–detektor. Dlatego kluczowe jest właśnie fizyczne rozmiar ogniska, a nie parametry emulsji czy luminoforu. Ilość promieniowania rozproszonego rzeczywiście psuje obraz, ale głównie przez obniżenie kontrastu. Rozproszenie dodaje do obrazu „mgłę”, przez co zanika różnica gęstości optycznych między strukturami. To wygląda jak brzydki, zamglony obraz, więc intuicyjnie kojarzy się z nieostrością, ale z punktu widzenia fizyki jest to degradacja kontrastu, a nie typowa nieostrość geometryczna. Dlatego w praktyce stosuje się kratki przeciwrozproszeniowe, kolimację wiązki, odpowiednie napięcia kV – wszystko po to, aby poprawić kontrast, a nie ostrość krawędzi wynikającą z wielkości ogniska. Grubość emulsji błony rentgenowskiej też ma znaczenie, ale dla tak zwanej nieostrości ziarnowej i czułości błony. Grubsza emulsja, większe ziarna srebra – rośnie czułość, skraca się czas ekspozycji, ale rośnie też ziarnistość i spada rozdzielczość. To nadal nie jest nieostrość geometryczna, tylko właściwości detektora. Podobnie z wielkością ziarna luminoforu w folii wzmacniającej: duże ziarna dają więcej światła (czyli większą czułość układu), ale pogarszają rozdzielczość przestrzenną folii. To jest nieostrość związana z systemem obrazowania, a nie z geometrią wiązki i ogniska. Typowy błąd myślowy polega na wrzuceniu wszystkich rodzajów pogorszenia obrazu do jednego worka pod hasłem „nieostrość”. W radiologii technicznej rozróżnia się jednak precyzyjnie: nieostrość geometryczną (ognisko, odległości), nieostrość detektora (błona, folia, piksel), nieostrość ruchową (ruch pacjenta, oddech, drżenie). W tym pytaniu chodziło dokładnie o tę pierwszą, stąd poprawna jest tylko odpowiedź dotycząca wielkości ogniska lampy rentgenowskiej.