Prawidłowo – obrazy DDR (Digital DRR, czyli cyfrowe Digitally Reconstructed Radiographs) powstają właśnie na etapie planowania radioterapii w komputerowym systemie planowania leczenia. System bierze trójwymiarowe dane z tomografii komputerowej pacjenta i na ich podstawie „symuluje” projekcje podobne do klasycznego zdjęcia RTG. W efekcie dostajemy obraz, który wygląda jak zdjęcie rentgenowskie, ale jest całkowicie wyliczony matematycznie z danych TK, a nie wykonany na aparacie terapeutycznym czy symulatorze. Taki DDR pokazuje, jak powinno wyglądać ustawienie pacjenta i pól terapeutycznych przy prawidłowym napromienianiu. W praktyce klinicznej używa się go do weryfikacji geometrii napromieniania: technik porównuje obraz DDR z obrazami weryfikacyjnymi wykonanymi już na aparacie (np. portal imaging, EPID) i sprawdza, czy kości, narządy krytyczne i obszar PTV są w tym samym położeniu. Moim zdaniem to jest jedno z kluczowych narzędzi bezpieczeństwa w radioterapii – dzięki DDR można wcześnie wychwycić błędne ustawienie pacjenta, przesunięcie stołu, złą rotację czy pomyłkę w doborze projekcji. Dobre praktyki mówią jasno: poprawnie przygotowany plan musi mieć wygenerowane DRR dla każdej wiązki, z czytelnie zaznaczonym konturem guza, narządów krytycznych i osiami referencyjnymi. W nowoczesnych systemach planowania (np. Eclipse, Monaco, RayStation) generacja DDR to standardowy krok workflow, praktycznie nie da się zakończyć planu bez tych obrazów. Warto też pamiętać, że jakość DDR zależy od jakości badania TK (grubość warstw, artefakty), więc już na etapie skanowania pacjenta trzeba myśleć o tym, że te dane posłużą później do rekonstrukcji obrazów referencyjnych dla całej radioterapii.
W tym pytaniu łatwo się złapać na skojarzeniach z klasycznym zdjęciem rentgenowskim, bo nazwa DDR brzmi podobnie do terminów używanych w radiologii. Obrazy DDR nie są jednak wykonywane bezpośrednio na aparacie terapeutycznym podczas napromieniania. Na aparacie terapeutycznym wykonuje się obrazy weryfikacyjne, najczęściej za pomocą EPID (Electronic Portal Imaging Device) albo CBCT. Służą one do sprawdzenia ustawienia pacjenta, ale są to rzeczywiste obrazy zarejestrowane detektorem, a nie obrazy rekonstruowane z danych tomograficznych. DDR to coś odwrotnego – to symulacja zdjęcia, wyliczona przez system planowania z objętości TK. Podobne nieporozumienie pojawia się przy kojarzeniu DDR z wykonywaniem przekrojów w tomografii komputerowej. TK dostarcza surowych danych przekrojowych, na podstawie których później system planowania generuje DDR. Sam tomograf nie tworzy DDR, on tylko dostarcza stos warstw, z których zespół fizyków i lekarzy buduje plan leczenia. Mylenie tych etapów to częsty błąd: badanie TK to diagnostyka i przygotowanie danych, a DDR to element planowania radioterapii, już w osobnym oprogramowaniu. Równie zdradliwa jest odpowiedź sugerująca, że DDR powstają podczas weryfikacji geometrii pól na symulatorze rentgenowskim. Klasyczny symulator wykonuje zwykłe zdjęcia RTG lub fluoroskopię w geometrii zbliżonej do aparatu terapeutycznego, ale to dalej są obrazy rentgenowskie, nie cyfrowo rekonstruowane radiogramy. DDR jest przygotowywany wcześniej, w systemie planowania, i dopiero potem może służyć jako wzorzec do porównania z obrazami z symulatora czy z aparatu terapeutycznego. Typowy błąd myślowy polega na tym, że skoro DDR służy do weryfikacji ustawienia, to musi być tworzony właśnie przy weryfikacji. W rzeczywistości proces jest dwustopniowy: najpierw planowanie i generacja DDR, potem ich wykorzystanie przy kontroli jakości ustawienia wiązek. Dlatego poprawne osadzenie DDR wyłącznie w kontekście komputerowego systemu planowania leczenia jest kluczowe z punktu widzenia prawidłowego zrozumienia całego procesu radioterapii.