Zawód: Technik elektroradiolog
Kategorie: Medycyna nuklearna Fizyka medyczna
Prawidłową odpowiedzią jest kamera scyntylacyjna, bo to właśnie ona stanowi podstawowy element diagnostyczny w aparaturze izotopowej wykorzystującej emisyjne metody pomiaru. W emisyjnych technikach medycyny nuklearnej źródłem promieniowania jest radioizotop podany pacjentowi, a zadaniem układu pomiarowego jest rejestracja promieniowania gamma wychodzącego z organizmu. Kamera scyntylacyjna (gammakamera) zamienia te kwanty promieniowania na błyski światła w krysztale scyntylacyjnym (najczęściej NaI(Tl)), a potem na sygnał elektryczny w fotopowielaczach. Na tej podstawie system tworzy obraz rozkładu radiofarmaceutyku w ciele. To właśnie ten element decyduje o jakości diagnostycznej badania: rozdzielczości przestrzennej, czułości detekcji, możliwości wykonywania projekcji planarnych i badań SPECT. W praktyce klinicznej kamera scyntylacyjna jest sercem całego zestawu – reszta aparatury (kolimatory, układy akwizycji, oprogramowanie) tylko wspiera jej działanie. Z mojego doświadczenia to na ustawieniu parametrów pracy kamery, doborze odpowiedniego kolimatora i właściwej energii okna fotopiku opiera się większość dobrej praktyki w scyntygrafii. W nowoczesnych pracowniach standardem jest używanie kamer scyntylacyjnych sprzężonych z TK (SPECT/CT), ale wciąż kluczowy element emisyjny to właśnie detektor scyntylacyjny. Bez niego mamy co najwyżej licznik promieniowania, a nie rzeczywiste narzędzie diagnostyki obrazowej zgodne z wytycznymi medycyny nuklearnej.