Prawidłowo – promieniowanie rentgenowskie w klasycznej lampie diagnostycznej powstaje głównie w wyniku gwałtownego hamowania elektronów na anodzie. W lampie RTG elektrony są emitowane z rozżarzonej katody (emisja termoelektronowa), a następnie przyspieszane silnym napięciem wysokim, rzędu kilkudziesięciu do nawet 120 kV, w kierunku anody. Lecą więc z dużą energią kinetyczną. Kiedy uderzają w ognisko anody (zwykle z wolframu lub stopu wolframu), są bardzo gwałtownie hamowane w polu elektrycznym jąder atomów materiału tarczy. Właśnie to hamowanie, czyli zmiana pędu i kierunku ruchu elektronu w polu jądra, powoduje emisję promieniowania hamowania – tzw. bremsstrahlung, które stanowi podstawową składową widma promieniowania w diagnostyce obrazowej. Dodatkowo część fotonów powstaje jako promieniowanie charakterystyczne, gdy elektron wybija elektron z powłoki wewnętrznej atomu wolframu i następuje przeskok z wyższej powłoki – ale to wciąż efekt zderzenia elektronu z anodą, nie z katodą. W praktyce klinicznej dobra znajomość tego mechanizmu tłumaczy, dlaczego zmiana napięcia kV wpływa na energię (twardość) wiązki, a zmiana natężenia mA – na ilość wytwarzanych fotonów. Z mojego doświadczenia w pracowniach RTG osoby, które rozumieją, że źródłem promieniowania jest właśnie interakcja szybkich elektronów z materiałem anody, lepiej ogarniają takie tematy jak filtracja wiązki, warstwa półchłonna czy dobór ogniska. Ma to znaczenie nie tylko dla jakości obrazu (kontrast, kontrastowość, szumy), ale też dla ochrony radiologicznej – bo wiemy, skąd bierze się promieniowanie rozproszone i jak parametry pracy lampy przekładają się na dawkę dla pacjenta i personelu. W standardach pracy (np. wytyczne ICRP, EUREF i krajowe rekomendacje) cały czas podkreśla się zależność: energia elektronów przy anodzie → widmo i intensywność promieniowania X.
W tym zagadnieniu łatwo pomylić kilka pojęć: katodę, anodę, elektrony i „kwanty energii”. W lampie rentgenowskiej mamy klasyczny układ katoda–anoda w próżni. Katoda to żarnik emitujący elektrony na skutek rozgrzania, natomiast anoda to tarcza, w którą te elektrony uderzają po przyspieszeniu wysokim napięciem. Kluczowe jest to, że „materiałem roboczym” są elektrony, a nie gotowe fotony czy jakieś abstrakcyjne „kwanty energii”. Częsty błąd myślowy polega na odwróceniu roli anody i katody lub na traktowaniu kwantów energii jakby już istniały w lampie i dopiero gdzieś się „hamowały”. W rzeczywistości przed zderzeniem z anodą mamy wyłącznie strumień elektronów, a nie promieniowanie X. Promieniowanie powstaje dopiero w momencie gwałtownego hamowania tych naładowanych cząstek w polu jąder atomowych materiału anody. Stąd odpowiedzi, w których mowa o hamowaniu na katodzie, są niezgodne z fizyką procesu. Katoda jest miejscem emisji i „wyrzucania” elektronów, a nie miejscem ich wytracania energii kinetycznej. Elektrony są tam przyspieszane przez pole elektryczne, więc nie ma mowy o wytwarzaniu promieniowania hamowania. Podobnie określenie „hamowanie kwantów energii” jest po prostu błędne pojęciowo. Kwant promieniowania X jest już efektem hamowania – to foton emitowany, gdy elektron traci energię. Nie da się więc logicznie mówić, że kwanty energii ulegają hamowaniu, bo one są produktem tego hamowania. Z punktu widzenia dobrej praktyki w radiologii warto zapamiętać prosty schemat: katoda emituje elektrony, wysokie napięcie je przyspiesza, anoda zatrzymuje i hamuje, a skutkiem tego jest powstanie fotonów promieniowania X. To tłumaczy, czemu konstrukcja anody (materiał, kąt nachylenia, chłodzenie) jest tak istotna, a także dlaczego większość ciepła generuje się właśnie w ognisku anody. Zrozumienie tego mechanizmu pomaga później ogarnąć m.in. charakterystykę widma promieniowania, zależność od kV i mAs oraz ograniczenia obciążenia cieplnego lampy – co jest podstawą bezpiecznej i poprawnej technicznie pracy przy aparacie RTG.