Na obrazie widzisz typowy wynik badania radioizotopowego kośćca, czyli scyntygrafię kości wykonaną gammakamerą po dożylnym podaniu radiofarmaceutyku (najczęściej znaczonego technetem-99m fosfonianu). Charakterystyczny jest tu tzw. obraz „szkieletu z rozmytymi konturami” – widoczne są głównie struktury kostne, bez dokładnego zarysu tkanek miękkich, a intensywność zabarwienia zależy od wychwytu znacznika metabolicznie aktywnego w kościach. To właśnie odróżnia obraz scyntygraficzny od klasycznego RTG czy TK, gdzie widzimy anatomiczne szczegóły, krawędzie, zróżnicowaną gęstość tkanek. W medycynie nuklearnej nie pokazujemy bezpośrednio anatomii, tylko rozkład radioaktywności – czyli funkcję narządu lub metabolizm tkanki. Moim zdaniem warto zapamiętać prostą rzecz: w badaniach radioizotopowych obraz jest zwykle bardziej „rozmyty”, kontrast jest funkcjonalny, a nie czysto anatomiczny. W scyntygrafii kości oceniamy m.in. ogniska wzmożonego metabolizmu kostnego – przerzuty nowotworowe, złamania przeciążeniowe, zmiany zapalne, martwicze. W praktyce klinicznej takie badanie jest standardem np. w onkologii przy podejrzeniu przerzutów do kości (rak piersi, prostaty), w ortopedii przy niejasnym bólu kostnym, w reumatologii przy rozsianych zmianach zapalnych. Zgodnie z dobrą praktyką medycyny nuklearnej ważne jest odpowiednie przygotowanie pacjenta (nawodnienie, opróżnienie pęcherza przed badaniem, zdjęcie metalowych przedmiotów) oraz właściwy dobór radiofarmaceutyku i aktywności dawki. Personel musi też zadbać o czas między podaniem znacznika a rejestracją obrazu (dla scyntygrafii kości najczęściej ok. 2–3 godziny), bo to wpływa na jakość i interpretowalność wyniku. Warto kojarzyć, że takie całociałowe, symetryczne „szkieletowe” obrazy to klasyka badań radioizotopowych w medycynie nuklearnej, a nie TK, MR czy PET, chociaż PET też należy do metod medycyny nuklearnej, ale wygląda już trochę inaczej i zwykle jest łączony z CT (PET/CT).
Przedstawiony obraz łatwo pomylić z innymi technikami obrazowania, zwłaszcza jeśli patrzymy tylko „na szybko” i widzimy coś w rodzaju szkieletu. Jednak klucz leży w charakterze obrazu. W tomografii komputerowej oczekiwalibyśmy bardzo wyraźnych konturów kości, zróżnicowanej gęstości tkanek miękkich, możliwości oceny narządów wewnętrznych. TK daje przekroje poprzeczne, a w rekonstrukcjach 3D obraz jest ostry, z dobrze odgraniczonymi strukturami. Tutaj widać natomiast zarys całego szkieletu, ale bez detali anatomicznych, z rozmytym tłem – to typowy wygląd scyntygrafii kości, a nie TK. Rezonans magnetyczny też nie pasuje do przedstawionego obrazu. MR bazuje na sygnale z protonów wodoru w polu magnetycznym i daje bardzo dobrą wizualizację tkanek miękkich: mózgu, więzadeł, szpiku kostnego, mięśni. Obrazy MR są dużo bardziej szczegółowe, mają różne sekwencje (T1, T2, STIR itd.), a kości korowe często są raczej „ciemne”, za to widoczny jest szpik i otaczające tkanki. Tutaj nie ma typowego dla MR kontrastu tkanek miękkich, tylko rozkład aktywności radiofarmaceutyku w kościach. Mylenie tego obrazu z pozytonową tomografią emisyjną wynika z tego, że PET też jest techniką medycyny nuklearnej i również pokazuje funkcję, a nie tylko anatomię. Jednak w praktyce klinicznej PET niemal zawsze wykonuje się jako PET/CT, więc na monitorze widzimy nałożenie obrazu funkcjonalnego na anatomiczny CT, z charakterystyczną kolorową skalą (czerwienie, żółcie) i możliwością oceny SUV. Pokazany obraz jest jednobarwny, typowy dla klasycznej scyntygrafii planarne, rejestrowanej gammakamerą, a nie dla PET. Dodatkowo w scyntygrafii kości używa się innych radiofarmaceutyków (np. 99mTc-MDP), natomiast w PET najczęściej 18F-FDG lub inne znaczniki pozytonowe. Typowym błędem jest skupienie się tylko na tym, że „widać kości”, bez zwrócenia uwagi na ostrość, rodzaj kontrastu i charakter techniki. W diagnostyce obrazowej bardzo pomaga kojarzenie: RTG/TK – obraz anatomiczny, wysoka rozdzielczość; MR – świetne tkanki miękkie; scyntygrafia – rozkład radioaktywności, obraz bardziej rozmyty; PET – funkcja + zwykle dołączony CT. Zrozumienie tych różnic jest kluczowe, żeby prawidłowo rozpoznawać, jaką metodą dane badanie zostało wykonane i jakie informacje kliniczne można z niego realnie wyciągnąć.