Zawód: Technik elektroradiolog
Kategorie: Medycyna nuklearna Fizyka medyczna
Prawidłowo – kluczowym elementem radiofarmaceutyku jest połączenie radioizotopu z ligandem. Ligand to cząsteczka chemiczna, która „prowadzi” radioizotop do konkretnego narządu, receptora albo procesu metabolicznego w organizmie. Sam radioizotop emituje promieniowanie (np. gamma w scyntygrafii czy pozytony w PET), ale bez ligandu byłby po prostu niespecyficznym źródłem promieniowania, które rozkłada się w organizmie dość chaotycznie. Dopiero dobranie odpowiedniego ligandu pozwala uzyskać tzw. swoistość narządową lub receptorową. W praktyce klinicznej klasycznym przykładem jest 99mTc-MDP używany w scyntygrafii kości – technet-99m to radioizotop, a MDP jest ligandem wiążącym się z tkanką kostną, szczególnie tam, gdzie jest wzmożony metabolizm kostny (np. przerzuty nowotworowe). Podobnie w PET mamy 18F-FDG, gdzie 18F to radioizotop fluoru, a FDG (fluorodeoksyglukoza) jest analogiem glukozy, który gromadzi się w komórkach o wysokim metabolizmie glukozy, np. komórkach nowotworowych lub w aktywnym zapaleniu. Z mojego doświadczenia nauki medycyny nuklearnej wynika, że zrozumienie roli ligandu bardzo ułatwia potem ogarnięcie, dlaczego różne radiofarmaceutyki mają inne wskazania: bo różne ligandy „celują” w inne struktury biologiczne. Standardem postępowania jest projektowanie radiofarmaceutyków właśnie w oparciu o właściwości farmakokinetyczne ligandu (droga podania, czas dystrybucji, metabolizm, wydalanie), a radioizotop dobiera się tak, żeby jego okres półtrwania i rodzaj promieniowania pasowały do planowanego badania lub terapii. W nowoczesnej medycynie nuklearnej coraz większy nacisk kładzie się na tzw. radiofarmaceutyki receptorowe, np. znakowane analogi somatostatyny w guzach neuroendokrynnych czy ligandy dla PSMA w diagnostyce raka prostaty. We wszystkich tych przypadkach fundamentem jest to samo: radioizotop + odpowiednio dobrany ligand tworzą razem skuteczny i bezpieczny radiofarmaceutyk.