Prawidłowo, SPECT to tomografia emisyjna pojedynczego fotonu (Single Photon Emission Computed Tomography). Jest to klasyczne badanie medycyny nuklearnej, gdzie pacjentowi podaje się radiofarmaceutyk emitujący promieniowanie gamma, a następnie gammakamera obraca się wokół ciała i rejestruje pojedyncze fotony wychodzące z organizmu. Z tych sygnałów komputer rekonstruuje przekrojowe obrazy 3D rozkładu znacznika w tkankach. W praktyce klinicznej SPECT wykorzystuje się np. w kardiologii do oceny perfuzji mięśnia sercowego (badania obciążeniowe, niedokrwienie, przebyte zawały), w neurologii do oceny ukrwienia mózgu, w ortopedii i onkologii do scyntygrafii kości czy lokalizacji ognisk zapalnych. Moim zdaniem ważne jest, żeby kojarzyć, że SPECT pokazuje przede wszystkim funkcję i metabolizm tkanek, a nie tylko ich budowę anatomiczną, jak klasyczna TK. Standardowo stosuje się radiofarmaceutyki oparte o technet-99m, które mają dobre parametry energetyczne i krótki czas półtrwania, co jest zgodne z zasadą ALARA i dobrą praktyką ochrony radiologicznej. Obrazy SPECT często łączy się z TK w jednym urządzeniu (SPECT/CT), co pozwala na precyzyjną lokalizację zmian w anatomii pacjenta – to jest obecnie złoty standard w wielu pracowniach medycyny nuklearnej. W technice ważne jest też prawidłowe pozycjonowanie pacjenta, odpowiedni czas akwizycji i korekcja osłabienia, żeby uzyskać obrazy dobrej jakości diagnostycznej. Warto zapamiętać: pojedynczy foton = SPECT, pozytony = PET, a brak emisji = klasyczna radiologia projekcyjna lub TK.
SPECT bardzo łatwo pomylić z innymi metodami obrazowania, bo wszystkie nazwy brzmią podobnie i wszędzie przewija się słowo „tomografia”. Jednak kluczowe jest, jak powstaje obraz. W tomografii komputerowej (TK, dawniej CAT – komputerowa tomografia osiowa) źródłem promieniowania jest lampa rentgenowska na gantrze, a detektory mierzą osłabienie wiązki przechodzącej przez ciało. To jest klasyczna metoda anatomiczna, oparta na promieniowaniu rentgenowskim, bez podawania radioaktywnego znacznika emitującego fotony z wnętrza organizmu. Dlatego odpowiedzi kojarzące SPECT z tomografią komputerową, zarówno tą tradycyjną, jak i wielorzędową (multislice CT), są merytorycznie błędne – to inna modalność, inne urządzenia, inne zasady fizyczne. Wielorzędowa TK to po prostu nowocześniejsza wersja klasycznej tomografii, z wieloma rzędami detektorów, umożliwiająca szybsze skanowanie i cieńsze warstwy, ale nadal nie ma nic wspólnego z emisyjną rejestracją fotonów gamma. Kolejne typowe pomieszanie dotyczy PET. Pozytonowa emisyjna tomografia komputerowa wykorzystuje radioizotopy emitujące pozytony, które anihilują z elektronami, dając parę fotonów 511 keV rejestrowanych w koincydencji przez pierścień detektorów. W SPECT nie ma ani pozytonów, ani anihilacji, ani detekcji w koincydencji – rejestrujemy pojedyncze fotony gamma emitowane bezpośrednio przez radiofarmaceutyk. Z mojego doświadczenia często spotykany błąd myślowy polega na tym, że skoro i PET, i SPECT, i TK robią przekroje, to ludzie wrzucają je do jednego worka. Tymczasem różnice mają ogromne znaczenie praktyczne: inne wskazania kliniczne, inne radiofarmaceutyki, inne wymagania ochrony radiologicznej i inne artefakty obrazu. Dobra praktyka w diagnostyce obrazowej wymaga świadomego rozróżniania metod emisyjnych (SPECT, PET) od transmisyjnych (RTG, TK) i zapamiętania prostego klucza: SPECT – pojedynczy foton gamma, PET – pozyton i para fotonów, TK – promieniowanie rentgenowskie z zewnątrz ciała.