Zawód: Technik elektroradiolog
Kategorie: Medycyna nuklearna Fizyka medyczna
Prawidłowa odpowiedź to promieniowanie beta plus, czyli emisja pozytonów. W badaniu PET/CT stosuje się radioizotopy, które rozpadają się z emisją pozytonu. Ten pozyton po bardzo krótkiej drodze w tkankach (zwykle poniżej kilku milimetrów) zderza się z elektronem i dochodzi do zjawiska anihilacji. W wyniku anihilacji powstają dwa kwanty promieniowania gamma o energii 511 keV, lecące w prawie dokładnie przeciwnych kierunkach (pod kątem 180°). I to właśnie te dwa fotony gamma są rejestrowane przez detektory w pierścieniu tomografu PET. System elektroniczny analizuje tzw. koincydencję tych fotonów, wyznacza linię, na której nastąpiła anihilacja, i na tej podstawie rekonstruuje obraz rozmieszczenia radiofarmaceutyku w organizmie. Czyli w praktyce: do organizmu podajemy emiter beta plus (np. 18F w FDG, 11C, 13N, 15O), ale detektory rejestrują już promieniowanie gamma powstałe po anihilacji. Z punktu widzenia fizyki medycznej kluczowe jest, że sam izotop musi być β+, bo tylko wtedy mamy anihilację i charakterystyczne dwa fotony 511 keV, które można wykryć w koincydencji. To odróżnia PET od klasycznej scyntygrafii SPECT, gdzie używa się głównie czystych emiterów gamma (np. 99mTc) i gammakamer. W nowoczesnych standardach pracowni medycyny nuklearnej (Euratom, IAEA, wytyczne EANM) wyraźnie podkreśla się dobór radioizotopów β+ o odpowiednim okresie półtrwania i energii pozytonów, co ma wpływ na jakość obrazu, rozdzielczość przestrzenną i dawkę dla pacjenta. W praktyce klinicznej najczęściej stosuje się 18F-FDG w onkologii, kardiologii i neurologii, właśnie dlatego, że jako emiter beta plus idealnie współpracuje z systemem PET i pozwala ocenić metabolizm glukozy w różnych tkankach, szczególnie w guzach nowotworowych.