W badaniu PET (pozytonowa tomografia emisyjna) kluczowe jest właśnie to, że używa się radioizotopów emitujących pozytony, czyli dodatnio naładowane odpowiedniki elektronów. To nie jest przypadek ani ciekawostka fizyczna, tylko fundament całej techniki obrazowania. Pozyton wychodzi z jądra radioaktywnego nuklidu (np. 18F, 11C, 15O, 13N), po bardzo krótkiej drodze w tkankach zderza się z elektronem i dochodzi do zjawiska anihilacji. W wyniku anihilacji powstają dwa fotony gamma o energii 511 keV, które rozlatują się w przybliżeniu w przeciwnych kierunkach (pod kątem 180°). Detektory PET rejestrują te dwa fotony jednocześnie, w tzw. koincydencji, i na tej podstawie system wyznacza linię, na której zaszła anihilacja. Z bardzo wielu takich zdarzeń komputer rekonstruuje trójwymiarowy obraz rozmieszczenia radiofarmaceutyku w organizmie. W praktyce klinicznej najczęściej stosuje się 18F-FDG, czyli fluorodeoksyglukozę znakowaną fluorem-18. Ten radiofarmaceutyk zachowuje się podobnie jak glukoza, więc gromadzi się w tkankach o zwiększonym metabolizmie glukozy, np. w większości nowotworów złośliwych, ale też w mózgu czy mięśniu sercowym. Dzięki temu PET pozwala ocenić aktywność metaboliczną zmian, a nie tylko ich strukturę anatomiczną. Z mojego doświadczenia to jest ogromna przewaga PET nad klasycznym RTG czy nawet samą TK: widzimy „żywotność” guza, odpowiedź na chemioterapię, wczesne nawroty. Standardy medycyny nuklearnej (np. EANM) wyraźnie mówią o stosowaniu wyłącznie emiterów pozytonów do badań PET, bo cała aparatura, algorytmy rekonstrukcji i procedury bezpieczeństwa są projektowane właśnie pod anihilacyjne fotony 511 keV i koincydencyjny system detekcji. Zastosowanie innych typów promieniowania (np. cząstek alfa czy czystych emiterów beta minus) uniemożliwiłoby uzyskanie obrazu typowego dla PET, bo nie powstawałyby te charakterystyczne pary fotonów. Dlatego wybór odpowiedzi „pozytony” idealnie pasuje do fizycznej zasady działania PET i do praktyki klinicznej opisanej w aktualnych wytycznych medycyny nuklearnej.
Podstawowy błąd przy tym pytaniu wynika zwykle z pomieszania różnych rodzajów promieniowania jonizującego i ich zastosowań w diagnostyce obrazowej. W medycynie używamy neutronów, elektronów, pozytonów, fotonów gamma czy cząstek alfa, ale każda z tych cząstek ma swoją specyficzną rolę i nie da się ich tak po prostu zamieniać między sobą w konkretnych technikach obrazowania. Neutrony są używane raczej w bardzo wyspecjalizowanych procedurach, np. w niektórych typach radioterapii neutronowej czy w badaniach materiałowych, a nie w rutynowej medycynie nuklearnej. Neutron jest elektrycznie obojętny, ma inne oddziaływania z materią niż cząstki naładowane, a aparatura PET jest zbudowana do rejestracji fotonów gamma o energii 511 keV, powstających z anihilacji pozyton–elektron, a nie do rejestracji neutronów. Elektrony, a właściwie promieniowanie beta minus, są istotne w wielu radioizotopach terapeutycznych, np. w leczeniu zmian przerzutowych do kości czy w terapii radioizotopowej tarczycy. Jednak w klasycznym badaniu PET one nie odgrywają roli sygnału używanego do obrazowania. Emiter beta minus nie daje par fotonów 511 keV w koincydencji, więc skaner PET nie ma czego zarejestrować w sposób pozwalający na rekonstrukcję obrazu. To jest typowe nieporozumienie: skoro to też „beta”, to może się nada – ale PET opiera się ściśle na emisji beta plus, czyli na pozytonach. Cząstki alfa z kolei mają bardzo krótką drogę w tkankach i ogromną energię liniową (wysokie LET). To idealne narzędzie w niektórych nowoczesnych terapiach celowanych (tzw. terapia alfa celowana), ale zupełnie niepraktyczne do obrazowania całego ciała. Z praktycznego punktu widzenia ich zasięg jest tak mały, że nie ma szans, żeby zarejestrować je na zewnątrz ciała za pomocą pierścienia detektorów PET. Do tego aparatura PET nie jest konstruowana pod wykrywanie cząstek ciężkich, tylko fotonów gamma. Moim zdaniem najczęstszy błąd myślowy polega na utożsamianiu „dowolnego promieniowania jonizującego” z możliwością wykonania dowolnego badania. A tak nie jest. PET to bardzo specyficzna technika, która wymaga radioizotopów emitujących pozytony (beta plus). Pozyton po anihilacji z elektronem generuje dwa fotony 511 keV, a cały system detekcji, koincydencji i rekonstrukcji obrazu jest pod to zoptymalizowany. Zastosowanie emiterów neutronów, elektronów czy cząstek alfa po prostu nie wygenerowałoby sygnału możliwego do wykorzystania w PET, zgodnie ze standardami medycyny nuklearnej i fizyki medycznej. Dlatego poprawne rozróżnienie typów promieniowania jest tu kluczowe, zarówno dla zrozumienia teorii, jak i dla bezpiecznej praktyki klinicznej.