W badaniu PET kluczowa jest emisja pozytonów, dlatego poprawna jest odpowiedź z radioizotopami emitującymi właśnie pozytony. Cała fizyka PET opiera się na zjawisku anihilacji pozyton–elektron. Radioizotop (np. 18F, 11C, 13N, 15O) wprowadzony do organizmu jest wbudowywany w radiofarmaceutyk, który zachowuje się jak zwykła cząsteczka metaboliczna, np. 18F-FDG zachowuje się podobnie do glukozy. Taki radionuklid rozpada się beta plus, czyli emituje pozyton. Pozyton po bardzo krótkiej drodze w tkankach (rzędu milimetrów) zderza się z elektronem, dochodzi do anihilacji i powstają dwa fotony gamma o energii 511 keV, biegnące prawie dokładnie w przeciwnych kierunkach. Detektory w gantrze PET rejestrują te dwa kwanty jednocześnie (koincydencja czasowa) i na tej podstawie wyznaczana jest linia, na której zaszła anihilacja. Oprogramowanie rekonstruuje z milionów takich zdarzeń trójwymiarowy rozkład aktywności radiofarmaceutyku w ciele pacjenta. W praktyce klinicznej ma to ogromne znaczenie np. w onkologii: PET-CT z 18F-FDG pozwala wykryć przerzuty, ocenić żywotność guza czy odpowiedź na chemioterapię. Standardy pracowni medycyny nuklearnej (np. EANM) jasno wskazują stosowanie wyłącznie radionuklidów beta plus dla klasycznego PET, bo tylko one dają charakterystyczny sygnał dwóch fotonów 511 keV. Moim zdaniem warto zapamiętać prostą regułę: PET = pozytony + anihilacja + dwa fotony 511 keV, reszta rodzajów promieniowania tutaj się po prostu nie sprawdza do obrazowania tą techniką.
W tomografii pozytonowej PET nie chodzi o jakiekolwiek promieniowanie jądrowe, tylko bardzo konkretny mechanizm fizyczny. Podstawą jest rozpad beta plus, czyli emisja pozytonu przez radioizotop. To odróżnia medycynę nuklearną w PET od innych zastosowań promieniowania. Częsty błąd polega na wrzucaniu do jednego worka wszystkich cząstek emitowanych w procesach jądrowych: neutronów, elektronów beta minus czy cząstek alfa. W praktyce obrazowania to tak nie działa. Neutrony są bardzo trudne do detekcji, wymagają zupełnie innych detektorów i stosuje się je głównie w technikach reaktorowych, radiografii neutronowej lub w fizyce eksperymentalnej, a nie w rutynowej medycynie nuklearnej. Nawet gdyby radioizotop medyczny emitował neutrony, to nie dałoby się zbudować typowej kamery PET na standardowych detektorach scyntylacyjnych pod koincydencję dwóch fotonów. Elektrony, czyli promieniowanie beta minus, są wykorzystywane w innych dziedzinach, np. w terapii izotopowej (promieniowanie cząstkowe działające miejscowo w tkance), ale nie w rekonstrukcji obrazów PET. Elektron ma mały zasięg w tkance i nie daje charakterystycznego, łatwego do uchwycenia na zewnątrz sygnału w postaci dwóch fotonów 511 keV. Podobnie cząstki alfa – bardzo silnie jonizujące, ale o ekstremalnie krótkim zasięgu, świetne do terapii celowanej, natomiast całkowicie nieprzydatne do obrazowania całego ciała metodą tomograficzną. Typowe nieporozumienie polega na myleniu „rodzaju promieniowania” z „rodzajem detekcji”: w PET nie rejestrujemy bezpośrednio pozytonów, tylko fotony gamma po anihilacji, ale warunkiem powstania tych fotonów jest właśnie emisja pozytonu. Dlatego używa się wyłącznie izotopów beta plus, a nie izotopów emitujących neutrony, elektrony beta minus czy cząstki alfa. Z mojego doświadczenia, jak się raz dobrze skojarzy PET z pozytonem i anihilacją, to pytania tego typu przestają być problemem.