W rezonansie magnetycznym kluczową rolę odgrywają protony wodoru, czyli po prostu jądra atomów wodoru obecne głównie w wodzie i tłuszczu. Moim zdaniem to jedna z tych rzeczy, które warto mieć „wryte” w pamięć, bo przewija się praktycznie wszędzie, gdzie mowa o MR. W organizmie człowieka woda stanowi większość masy, a każdy atom wodoru ma pojedynczy proton z własnym momentem magnetycznym (tzw. spinem). W silnym polu magnetycznym tomografu MR te protony ustawiają się częściowo równolegle do kierunku pola. Następnie urządzenie wysyła fale radiowe (impuls RF) o częstotliwości rezonansowej Larmora, które wytrącają te protony z równowagi. Gdy impuls się kończy, protony wracają do stanu wyjściowego, emitując sygnał, który jest rejestrowany przez cewki odbiorcze. Na podstawie różnic w czasie relaksacji T1 i T2 oraz gęstości protonów w różnych tkankach komputer rekonstruuje obraz przekrojowy ciała. Dlatego w praktyce im więcej protonów wodoru w danej tkance, tym silniejszy sygnał MR, choć ważne są też właściwości środowiska chemicznego, np. różnice między tkanką tłuszczową a mięśniową. W standardach opisów badań MR często odnosi się do sekwencji zależnych od T1, T2, PD (proton density), co bezpośrednio pokazuje, że to właśnie protony wodoru są głównym „źródłem informacji” w tym badaniu. W codziennej pracy technika czy elektroradiologa przekłada się to na dobór odpowiednich sekwencji, parametrów TR, TE i typów obrazowania, aby jak najlepiej wykorzystać sygnał od protonów wodoru do uwidocznienia zmian patologicznych, np. obrzęku, martwicy, zmian demielinizacyjnych czy guzów. Bez obecności protonów wodoru obraz MR praktycznie by nie powstał, co widać chociażby w obrębie struktur zawierających mało wody (np. kość korowa), które dają bardzo słaby sygnał.
W rezonansie magnetycznym bardzo łatwo pomylić, które cząstki rzeczywiście biorą udział w tworzeniu obrazu, bo w organizmie mamy jądra, elektrony, różne pierwiastki i to wszystko na pierwszy rzut oka wydaje się mieć znaczenie. Tymczasem fizyka MR opiera się głównie na jądrze wodoru, czyli pojedynczym protonie, a nie na elektronach ani na jądrach cięższych pierwiastków, takich jak wapń. Jądra wapnia są obecne w kościach, ale mają zupełnie inne właściwości magnetyczne i w dodatku dużo mniejszą „przydatność” w typowych klinicznych aparatach MR. Kość korowa zawierająca dużo wapnia praktycznie nie daje sygnału w standardowych sekwencjach, dlatego na obrazach MR wygląda zwykle bardzo ciemno. Gdyby to jądra wapnia były podstawą obrazowania, widzielibyśmy kości świetnie, a tkanki miękkie dużo gorzej, a jest dokładnie odwrotnie. Elektrony, zarówno w wapniu, jak i w wodorze, mają co prawda własny moment magnetyczny, ale rezonans elektronowy (EPR/ESR) to zupełnie inna technika, używana raczej w badaniach fizycznych i chemicznych, a nie w rutynowej diagnostyce medycznej. Aparaty kliniczne MR są projektowane pod częstotliwości rezonansowe jąder wodoru, a nie elektronów. To jest podstawowy błąd myślowy: założenie, że skoro elektrony też „reagują” na pole magnetyczne, to one muszą być obrazowane. W praktyce w medycynie używamy jądrowego rezonansu magnetycznego jąder o spinie niezerowym, głównie 1H, bo wodór jest w każdej tkance w ogromnej ilości. Elektrony są dla nas bardziej tłem fizycznym niż użytecznym sygnałem. Kolejne nieporozumienie dotyczy samego wapnia: kości są świetnie widoczne w RTG i TK, więc ktoś może intuicyjnie przenosić to skojarzenie na MR. Jednak RTG i TK bazują na osłabianiu promieniowania jonizującego, a nie na właściwościach magnetycznych jąder. W MR liczy się gęstość protonów wodoru i czasy relaksacji w środowisku wodnym, dlatego to tkanki miękkie, mózg, mięśnie, narządy miąższowe wyglądają tak dobrze, a struktury silnie zmineralizowane są ciemne. Z mojego doświadczenia warto sobie to poukładać: MR = protony wodoru w polu magnetycznym + fale radiowe; RTG/TK = promieniowanie jonizujące i pochłanianie przez różne tkanki. Takie rozdzielenie pomaga unikać mylenia roli elektronów czy jąder wapnia z faktycznym mechanizmem działania rezonansu magnetycznego.