Prawidłowa odpowiedź to pozytonowa tomografia emisyjna (PET), bo tylko w tej technice wykorzystuje się zjawisko anihilacji pozyton–elektron i rejestruje się jednocześnie dwa przeciwbieżne fotony gamma o energii 511 keV. W PET radiofarmaceutyk emituje pozytony, które po bardzo krótkiej drodze w tkance zderzają się z elektronami. W wyniku anihilacji masa cząstek zamienia się w energię i powstają dwa kwanty promieniowania gamma lecące w prawie dokładnie przeciwnych kierunkach, każdy właśnie o energii 511 keV. Detektory PET ułożone w pierścień rejestrują te dwa fotony w tzw. koincydencji czasowej. Dzięki temu aparat wie, że zdarzenie pochodzi z jednej linii między dwoma detektorami (linia odpowiedzi – LOR), co pozwala bardzo precyzyjnie odtworzyć rozkład radioznacznika w organizmie. W praktyce klinicznej PET stosuje się głównie w onkologii, kardiologii i neurologii – np. do wykrywania przerzutów nowotworowych, oceny żywotności mięśnia sercowego albo metabolizmu glukozy w mózgu. Moim zdaniem kluczowe jest zapamiętanie, że energia 511 keV i rejestracja koincydencyjna dwóch fotonów to absolutny „podpis” PET, a nie zwykłej scyntygrafii czy SPECT. W dobrej praktyce technik zawsze zwraca uwagę na poprawne ułożenie pacjenta w pierścieniu, stabilność układu koincydencyjnego i kalibrację energii detektorów, bo każdy błąd w tych elementach psuje jakość rekonstrukcji obrazu i może prowadzić do fałszywie dodatnich lub ujemnych ognisk wychwytu.
W tym pytaniu pułapka polega głównie na skojarzeniu słowa „gamma” z każdą metodą medycyny nuklearnej albo w ogóle z radiologią. Tymczasem rejestracja dwóch przeciwbieżnych fotonów gamma o energii dokładnie 511 keV jest charakterystyczna wyłącznie dla pozytonowej tomografii emisyjnej (PET), gdzie wykorzystuje się anihilację pozytonu z elektronem. W klasycznej scyntygrafii dynamicznej używa się gammakamery, ale rejestruje ona pojedyncze fotony gamma emitowane przez izotopy takie jak technet-99m. Nie ma tam zjawiska koincydencji dwóch przeciwległych kwantów ani stałej energii 511 keV – energia zależy od konkretnego radionuklidu (np. około 140 keV dla 99mTc). Dynamiczny jest tylko sposób akwizycji w czasie, a nie fizyka promieniowania. Tomografia komputerowa (TK, CT) z kolei w ogóle nie pracuje na promieniowaniu gamma z anihilacji, tylko na promieniowaniu rentgenowskim generowanym w lampie rentgenowskiej. Wiązka przechodzi przez pacjenta, a detektory mierzą osłabienie promieniowania X, nie mają tu miejsca ani pozytony, ani koincydencja dwóch fotonów. To dość częsty błąd: wrzucanie TK, PET i SPECT do jednego worka „bo wszystkie to tomografie”. W tomografii emisyjnej pojedynczego fotonu (SPECT) faktycznie używa się promieniowania gamma i rekonstrukcji tomograficznej, ale rejestruje się pojedyncze fotony, nie pary przeciwbieżnych kwantów. Aparat obraca się wokół pacjenta, zbiera projekcje emisji z różnych kątów i z tego liczy obraz 3D. Energia fotonów znowu zależy od użytego izotopu, a nie jest stała 511 keV. Typowy schemat błędnego myślenia jest taki: „jest gamma, jest tomografia, to pewnie chodzi o SPECT albo scyntygrafię”, albo odwrotnie – utożsamianie każdej tomografii z promieniowaniem X. Dlatego warto zapamiętać prostą zasadę: 511 keV + dwa przeciwbieżne fotony w koincydencji = PET; pojedyncze fotony gamma z gammakamery = scyntygrafia/SPECT; promieniowanie X z lampy = RTG/TK.