Poprawnie – w lampie rentgenowskiej promieniowanie X powstaje głównie w wyniku gwałtownego hamowania szybkich elektronów na anodzie. W typowej lampie mamy katodę (żarnik), która emituje elektrony przez emisję termojonową. Następnie między katodą a anodą przykładane jest wysokie napięcie, zwykle kilkadziesiąt do nawet ponad 100 kV. To napięcie bardzo mocno przyspiesza elektrony w próżni w kierunku anody. Kiedy te rozpędzone elektrony uderzają w materiał anody (najczęściej wolfram, rzadziej molibden lub inne stopy), są gwałtownie hamowane w polu elektrycznym jąder atomowych anody. I właśnie to hamowanie powoduje emisję promieniowania hamowania, tzw. bremsstrahlung, które stanowi podstawową część widma promieniowania rentgenowskiego. Dodatkowo dochodzi jeszcze promieniowanie charakterystyczne, gdy elektron wybija elektron z wewnętrznej powłoki atomu wolframu, ale ono też powstaje w materiale anody, a nie na katodzie. W praktyce technik obrazowania musi rozumieć, że zmiana napięcia na lampie (kV) wpływa na energię elektronów i tym samym na energię i przenikliwość promieniowania X, a zmiana natężenia prądu (mA) wpływa głównie na ilość elektronów, czyli na ilość promieniowania. Z mojego doświadczenia opłaca się to dobrze ogarnąć, bo potem łatwiej rozumie się zależności między ustawieniami aparatu a jakością obrazu i dawką dla pacjenta. W nowoczesnych aparatach RTG cała konstrukcja lampy, chłodzenie anody (np. anoda obrotowa) i dobór materiałów są oparte właśnie na tym zjawisku hamowania elektronów w anodzie, żeby uzyskać dużo stabilnego promieniowania przy jednoczesnym bezpiecznym odprowadzeniu ciepła.
W lampie rentgenowskiej kluczowe jest zrozumienie, która elektroda pełni jaką funkcję i gdzie dokładnie powstaje promieniowanie X. Katoda jest elementem grzejnym, żarnikiem, który emituje elektrony na skutek emisji termojonowej. Wysokie napięcie przyłożone między katodą a anodą powoduje, że elektrony są przyspieszane w kierunku anody. Katoda nie służy do hamowania, tylko do wytwarzania i „wyrzucania” elektronów w przestrzeń lampy. Dlatego mówienie o hamowaniu elektronów na katodzie jest fizycznie bez sensu – tam elektrony startują, a nie się zatrzymują. Podobnie nie używa się w lampach rentgenowskich protonów. W całej klasycznej diagnostycznej aparaturze RTG nośnikiem ładunku i energii kinetycznej są elektrony. Protony są znacznie cięższe, ich przyspieszanie wymagałoby zupełnie innej konstrukcji urządzenia, bliższej akceleratorom cząstek niż zwykłej lampie rentgenowskiej. Stąd pomysł, że promieniowanie X powstaje w wyniku hamowania protonów, czy to na katodzie, czy na anodzie, wynika raczej z pomieszania pojęć albo z intuicyjnego skojarzenia, że „jak jest promieniowanie, to może chodzi o jakieś inne cząstki”. W realnym aparacie RTG to elektrony uderzają w anodę wykonaną zwykle z wolframu. W materiale anody następuje gwałtowne wytracenie energii kinetycznej tych elektronów w polu jąder atomowych, co generuje promieniowanie hamowania oraz promieniowanie charakterystyczne. To miejsce zderzenia z anodą, a nie katoda, jest źródłem użytecznego promieniowania. Mylenie ról katody i anody jest jednym z częstych błędów: katoda emituje, anoda hamuje i świeci w zakresie X. Rozróżnienie tego ma praktyczne znaczenie, bo tłumaczy, czemu konstrukcja anody musi zapewniać bardzo dobre odprowadzanie ciepła, a ustawienia napięcia kV odnoszą się do energii elektronów między katodą a anodą, a nie do jakichś „protonów w lampie”.